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5.0 PROGRAM OVERVIEW 
 
Driver distraction is a major contributing factor to automobile crashes. National Highway 
Traffic Safety Administration (NHTSA) has estimated that approximately 25% of crashes 
are attributed to driver distraction and inattention (Wang, Knipling, & Goodman, 1996). 
The issue of driver distraction may become worse in the next few years because more 
electronic devices (e.g., cell phones, navigation systems, wireless Internet and email 
devices) are brought into vehicles that can potentially create more distraction. In 
response to this situation, the John A. Volpe National Transportation Systems Center 
(VNTSC), in support of NHTSA's Office of Vehicle Safety Research, awarded a contract 
to Delphi Electronics & Safety to develop, demonstrate, and evaluate the potential 
safety benefits of adaptive interface technologies that manage the information from 
various in-vehicle systems based on real-time monitoring of the roadway conditions and 
the driver's capabilities. The contract, known as SAfety VEhicle(s) using adaptive 
Interface Technology (SAVE-IT), is designed to mitigate distraction with effective 
countermeasures and enhance the effectiveness of safety warning systems. 
 
The SAVE-IT program serves several important objectives. Perhaps the most important 
objective is demonstrating a viable proof of concept that is capable of reducing 
distraction-related crashes and enhancing the effectiveness of safety warning systems. 
Program success is dependent on integrated closed-loop principles that, not only 
include sophisticated telematics, mobile office, entertainment and safety warning 
systems, but also incorporate the state of the driver. This revolutionary closed-loop 
vehicle environment will be achieved by measuring the driver’s state, assessing the 
situational threat, prioritizing information presentation, providing adaptive 
countermeasures to minimize distraction, and optimizing advanced collision warning. 
 
To achieve the objective, Delphi Electronics & Safety has assembled a comprehensive 
team including researchers and engineers from the University of Iowa, University of 
Michigan Transportation Research Institute (UMTRI), General Motors, Ford Motor 
Company, and Seeing Machines, Inc. The SAVE-IT program is divided into two phases 
shown in Figure i. Phase I spans one year (March 2003--March 2004) and consists of 
nine human factors tasks (Tasks 1-9) and one technology development task (Task 10) 
for determination of diagnostic measures of driver distraction and workload, architecture 
concept development, technology development, and Phase II planning. Each of the 
Phase I tasks is further divided into two sub-tasks. In the first sub-tasks (Tasks 1, 2A-
10A), the literature is reviewed, major findings are summarized, and research needs are 
identified. In the second sub-tasks (Tasks 1, 2B-10B), experiments will be performed 
and data will be analyzed to identify diagnostic measures of distraction and workload 
and determine effective and driver-friendly countermeasures. Phase II will span 
approximately two years (October 2004--October 2006) and consist of a continuation of 
seven Phase I tasks (Tasks 2C--8C) and five additional tasks (Tasks 11-15) for 
algorithm and guideline development, data fusion, integrated countermeasure 
development, vehicle demonstration, and evaluation of benefits. 
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It is worthwhile to note the SAVE-IT tasks in Figure i are inter-related. They have been 
chosen to provide necessary human factors data for a two-pronged approach to 
address the driver distraction and adaptive safety warning countermeasure problems.  
The first prong (Safety Warning Countermeasures sub-system) uses driver distraction, 
intent, and driving task demand information to adaptively adjust safety warning systems 
such as forward collision warning (FCW) systems in order to enhance system 
effectiveness and user acceptance. Task 1 is designed to determine which safety 
warning system(s) should be deployed in the SAVE-IT system. Safety warning systems 
will require the use of warnings about immediate traffic threats without an annoying rate 
of false alarms and nuisance alerts. Both false alarms and nuisance alerts will be 
reduced by system intelligence that integrates driver state, intent, and driving task 
demand information that is obtained from Tasks 2 (Driving Task Demand), 3 
(Performance), 5 (Cognitive Distraction), 7 (Visual Distraction), and 8 (Intent).  
 
The safety warning system will adapt to the needs of the driver. When a driver is 
cognitively and visually attending to the lead vehicle, for example, the warning 
thresholds can be altered to delay the onset of the FCW alarm or reduce the 
intrusiveness of the alerting stimuli. When a driver intends to pass a slow-moving lead 
vehicle and the passing lane is open, the auditory stimulus might be suppressed in 
order to reduce the alert annoyance of a FCW system. Decreasing the number of false 
positives may reduce the tendency for drivers to disregard safety system warnings. 
Task 9 (Safety Warning Countermeasures) will investigate how driver state and intent 
information can be used to adapt safety warning systems to enhance their effectiveness 
and user acceptance. Tasks 10 (Technology Development), 11 (Data Fusion), 12 
(Establish Guidelines and Standards), 13 (System Integration), 14 (Evaluation), and 15 
(Program Summary and Benefit Evaluation) will incorporate the research results 
gleaned from the other tasks to demonstrate the concept of adaptive safety warning 
systems and evaluate and document the effectiveness, user acceptance, driver 
understandability, and benefits and weaknesses of the adaptive systems. It should be 
pointed out that the SAVE-IT system is a relatively early step in bringing the driver into 
the loop and therefore, system weaknesses will be evaluated, in addition to the 
observed benefits.  
 
The second prong of the SAVE-IT program (Distraction Mitigation sub-system) will 
develop adaptive interface technologies to minimize driver distraction to mitigate against 
a global increase in risk due to inadequate attention allocation to the driving task. Two 
examples of the distraction mitigation system include the delivery of a gentle warning 
and the lockout of certain telematics functions when the driver is more distracted than 
what the current driving environment allows. A major focus of the SAVE-IT program is 
the comparison of various mitigation methods in terms of their effectiveness, driver 
understandability, and user acceptance. It is important that the mitigation system does 
not introduce additional distraction or driver frustration. Because the lockout method has 
been shown to be problematic in the aviation domain and will likely cause similar 
problems for drivers, it should be carefully studied before implementation. If this method 
is not shown to be beneficial, it will not be implemented.  
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The distraction mitigation system will process the environmental demand (Task 2: 
Driving Task Demand), the level of driver distraction [Tasks 3 (Performance), 5 
(Cognitive Distraction), 7 (Visual Distraction)], the intent of the driver (Task 8: Intent), 
and the telematics distraction potential (Task 6: Telematics Demand) to determine 
which functions should be advised against under a particular circumstance. Non-driving 
task information and functions will be prioritized based on how crucial the information is 
at a specific time relative to the level of driving task demand. Task 4 will investigate 
distraction mitigation strategies and methods that are very well accepted by the users 
(i.e., with a high level of user acceptance) and understandable to the drivers. Tasks 10 
(Technology Development), 11 (Data Fusion), 12 (Establish Guidelines and Standards), 
13 (System Integration), 14 (Evaluation), and 15 (Program Summary and Benefit 
Evaluation) will incorporate the research results gleaned from the other tasks to 
demonstrate the concept of using adaptive interface technologies in distraction 
mitigation and evaluate and document the effectiveness, driver understandability, user 
acceptance, and benefits and potential weaknesses of these technologies.  
 
In particular, driving task demand and driver state (including driver distraction and 
impairment) form the major dimensions of a driver safety system. It has been argued 
that crashes are frequently caused by drivers paying insufficient attention when an 
unexpected event occurs, requiring a novel (non-automatic) response. As displayed in 
Figure ii, attention to the driving task may be depleted by driver impairment (due to 
drowsiness, substance use, or a low level of arousal) leading to diminished attentional 
resources, or allocation to non-driving tasks1. Because NHTSA is currently sponsoring 
other impairment-related studies, the assessment of driver impairment is not included in 
the SAVE-IT program at the present time. One assumption is that safe driving requires 
that attention be commensurate with the driving demand or unpredictability of the 
environment. Low demand situations (e.g., straight country road with no traffic at 
daytime) may require less attention because the driver can usually predict what will 
happen in the next few seconds while the driver is attending elsewhere. Conversely, 
high demand (e.g., multi-lane winding road with erratic traffic) situations may require 
more attention because during any time attention is diverted away, there is a high 
probability that a novel response may be required.  It is likely that most intuitively drivers 
take the driving-task demand into account when deciding whether or not to engage in a 
non-driving task.  Although this assumption is likely to be valid in a general sense, a 
counter argument is that problems may also arise when the situation appears to be 
relatively benign and drivers overestimate the predictability of the environment.  Driving 
environments that appear to be predictable may therefore leave drivers less prepared to 
respond when an unexpected threat does arise. 

                                                 
1 The distinction between driving and non-driving tasks may become blurred sometimes. For 
example, reading street signs and numbers is necessary for determining the correct course of 
driving, but may momentarily divert visual attention away from the forward road and degrade a 
driver's responses to unpredictable danger evolving in the driving path. In the SAVE-IT program, 
any off-road glances, including those for reading street signs, will be assessed in terms of visual 
distraction and the information about distraction will be fed into adaptive safety warning 
countermeasures and distraction mitigation sub-systems. 
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A safety system that mitigates the use of in-vehicle information and entertainment 
system (telematics) must balance both attention allocated to the driving task that will be 
assessed in Tasks 3 (Performance), 5 (Cognitive Distraction), and 7 (Visual Distraction) 
and attention demanded by the environment that will be assessed in Task 2 (Driving 
Task Demand). The goal of the distraction mitigation system should be to keep the level 
of attention allocated to the driving task above the attentional requirements demanded 
by the current driving environment. For example, as shown in Figure ii, “routine” driving 
may suffice during low or moderate driving task demand, slightly distracted driving may 
be adequate during low driving task demand, but high driving task demand requires 
attentive driving. 
 
 

Attention
allocated to

driving tasks

Attentive driving

“Routine” driving

Distracted driving

Impaired driving

Low Driving
Demand

High Driving
Demand

Moderate Driving
Demand

Attention
allocated to
non-driving

tasks

Figure ii. Attention allocation to driving and non-driving tasks 
 
 
It is important to note that the SAVE-IT system addresses both high-demand and low-
demand situations. With respect to the first prong (Safety Warning Countermeasures 
sub-system), the safety warning systems (e.g., the FCW system) will always be active, 
regardless of the demand. Sensors will always be assessing the driving environment 
and driver state. If traffic threats are detected, warnings will be issued that are 
commensurate with the real time attentiveness of the driver, even under low-demand 
situations. With respect to the second prong (Distraction Mitigation sub-system), driver 
state including driver distraction and intent will be continuously assessed under all 
circumstances. Warnings may be issued and telematics functions may be screened out 
under both high-demand and low-demand situations, although the threshold for 
distraction mitigation may be different for these situations. 
 
It should be pointed out that drivers tend to adapt their driving, including distraction 
behavior and maintenance of speed and headway, based on driving (e.g., traffic and 
weather) and non-driving conditions (e.g., availability of telematics services), either 
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consciously or unconsciously. For example, drivers may shed non-driving tasks (e.g., 
ending a cell phone conversation) when driving under unfavorable traffic and weather 
conditions. It is critical to understand this "driver adaptation" phenomenon. In principle, 
the "system adaptation" in the SAVE-IT program (i.e., adaptive safety warning 
countermeasures and adaptive distraction mitigation sub-systems) should be carefully  
implemented to ensure a fit between the two types of adaptation: "system adaptation" 
and "driver adaptation". One potential problem in a system that is inappropriately 
implemented is that the system and the driver may be reacting to each other in an 
unstable manner. If the system adaptation is on a shorter time scale than the driver 
adaptation, the driver may become confused and frustrated. Therefore, it is important to 
take the time scale into account. System adaptation should fit the driver's mental model 
in order to ensure driver understandability and user acceptance. Because of individual 
difference, it may also be important to tailor the system to individual drivers in order to 
maximize driver understandability and user acceptance. Due to resource constraints, 
however, a nominal driver model will be adopted in the initial SAVE-IT system. Driver 
profiling, machine learning of driver behavior, individual difference-based system 
tailoring may be investigated in future research programs. 
 

Communication and Commonalities Among Tasks and Sites 
 
In the SAVE-IT program, a "divide-and-conquer" approach has been taken. The 
program is first divided into different tasks so that a particular research question can be 
studied in a particular task. The research findings from the various tasks are then 
brought together to enable us to develop and evaluate integrated systems. Therefore, a 
sensible balance of commonality and diversity is crucial to the program success. 
Diversity is reflected by the fact that every task is designed to address a unique 
question to achieve a particular objective. As a matter of fact, no tasks are redundant or 
unnecessary. Diversity is clearly demonstrated in the respective task reports. Also 
documented in the task reports is the creativity of different task owners in attacking 
different research problems.  
 
Task commonality is very important to the integration of the research results from the 
various tasks into a coherent system and is reflected in terms of the common methods 
across the various tasks. Because of the large number of tasks (a total of 15 tasks 
depicted in Figure i) and the participation of multiple sites (Delphi Electronics & Safety, 
University of Iowa, UMTRI, Ford Motor Company, and General Motors), close 
coordination and commonality among the tasks and sites are key to program success. 
Coordination mechanisms, task and site commonalities have been built into the 
program and are reinforced with the bi-weekly teleconference meetings and regular 
email and telephone communications. It should be pointed out that little time was 
wasted in meetings. Indeed, some bi-weekly meetings were brief when decisions can 
be made quickly, or canceled when issues can be resolved before the meetings. The 
level of coordination and commonality among multiple sites and tasks is un-precedented 
and has greatly contributed to program success. A selection of commonalities is 
described below. 
 

 5-8



Commonalities Among Driving Simulators and Eye Tracking Systems In Phase I     
Although the Phase I tasks are performed at three sites (Delphi Electronics & Safety, 
University of Iowa, and UMTRI), the same driving simulator software, Drive SafetyTM 
(formerly called GlobalSimTM) from Drive Safety Inc., and the same eye tracking system, 
FaceLabTM from Seeing Machines, Inc. are used in Phase I tasks at all sites. The 
performance variables (e.g., steering angle, lane position, headway) and eye gaze 
measures (e.g., gaze coordinate) are defined in the same manner across tasks. 
 
Common Dependent Variables An important activity of the driving task is tactical 
maneuvering such as speed and lane choice, navigation, and hazard monitoring. A key 
component of tactical maneuvering is responding to unpredictable and probabilistic 
events (e.g., lead vehicle braking, vehicles cutting in front) in a timely fashion. Timely 
responses are critical for collision avoidance. If a driver is distracted, attention is 
diverted from tactical maneuvering and vehicle control, and consequently, reaction time 
(RT) to probabilistic events increases. Because of the tight coupling between reaction 
time and attention allocation, RT is a useful metric for operationally defining the concept 
of driver distraction. Furthermore, brake RT can be readily measured in a driving 
simulator and is widely used as input to algorithms, such as the forward collision 
warning algorithm (Task 9: Safety Warning Countermeasures). In other words, RT is 
directly related to driver safety. Because of these reasons, RT to probabilistic events is 
chosen as a primary, “ground-truth” dependent variable in Tasks 2 (Driving Task 
Demand), 5 (Cognitive Distraction), 6 (Telematics Demand), 7 (Visual Distraction), and 
9 (Safety Warning Countermeasures).  
 
Because RT may not account for all of the variance in driver behavior, other measures 
such as steering entropy (Boer, 2001), headway, lane position and variance (e.g., 
standard deviation of lane position or SDLP), lane departures, and eye glance behavior 
(e.g., glance duration and frequency) are also be considered. Together these measures 
will provide a comprehensive picture about driver distraction, demand, and workload.  
 
Common Driving Scenarios For the tasks that measure the brake RT, the "lead 
vehicle following" scenario is used. Because human factors and psychological research 
has indicated that RT may be influenced by many factors (e.g., headway), care has 
been taken to ensure a certain level of uniformity across different tasks. For instance, a 
common lead vehicle (a white passenger car) was used. The lead vehicle may brake 
infrequently (no more than 1 braking per minute) and at an unpredictable moment. The 
vehicle braking was non-imminent in all experiments (e.g., a low value of deceleration), 
except in Task 9 (Safety Warning Countermeasures) that requires an imminent braking. 
In addition, the lead vehicle speed and the time headway between the lead vehicle and 
the host vehicle are commonized across tasks to a large extent. 
 
Subject Demographics It has been shown in the past that driver ages influence 
driving performance, user acceptance, and driver understandability. Because the age 
effect is not the focus of the SAVE-IT program, it is not possible to include all driver 
ages in every task with the budgetary and resource constraints. Rather than using 
different subject ages in different tasks, however, driver ages are commonized across 
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tasks. Three age groups are defined: younger group (18-25 years old), middle group 
(35-55 years old), and older group (65-75 years old). Because not all age groups can be 
used in all tasks, one age group (the middle group) is chosen as the common age group 
that is used in every task. One reason for this choice is that drivers of 35-55 years old 
are the likely initial buyers and users of vehicles with advanced technologies such as 
the SAVE-IT systems. Although the age effect is not the focus of the program, it is 
examined in some tasks. In those tasks, multiple age groups were used. 
 
The number of subjects per condition per task is based on the particular experimental 
design and condition, the effect size shown in the literature, and resource constraints. In 
order to ensure a reasonable level of uniformity across tasks and confidence in the 
research results, a minimum of eight subjects is used for each and every condition. The 
typical number of subjects is considerably larger than the minimum, frequently between 
10-20. 
 
Other Commonalities In addition to the commonalities across all tasks and all 
sites, there are additional common features between two or three tasks. For example, 
the simulator roadway environment and scripting events (e.g., the TCL scripts used in 
the driving simulator for the headway control and braking event onset) may be shared 
between experiments, the same distraction (non-driving) tasks may be used in different 
experiments, and the same research methods and models (e.g., Hidden Markov Model) 
may be deployed in various tasks. These commonalities afford the consistency among 
the tasks that is needed to develop and demonstrate a coherent SAVE-IT system. 
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The Content and Structure of the Report 
 
The report submitted herein is a literature review report that documents the research 
progress to date (March 1--September 10, 2003) in Phase I. During the period of March-
September 2003, the effort has been focused on the first Phase I sub-task: Literature 
Review. In this report, previous experiments are discussed, research findings are 
reported, and research needs are identified. This literature review report serves to 
establish the research strategies of each task. 
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5.1 INTRODUCTION 
Just as computers have transformed the office in the last 20 years, they will transform 
the car in the next decade.  Recent advances in sensor, wireless, computing, and 
Global Position System (GPS) technology make sophisticated in-vehicle information 
systems (IVIS) feasible.  These advances, combined with societal trends for increased 
productivity and the diffusion of work beyond the traditional office environment, will 
make these systems a reality.  Computer, software, telecommunications, and 
automotive companies have begun to develop IVIS functions in anticipation of a $15 – 
$100 billion IVIS market (Ashley 2001; Lee, McGehee et al. 2002; Lee, McGehee et al. 
2002)  Unlike the desktop domain, in-vehicle information system (IVIS) functions require 
timesharing with the safety-critical task of driving.  Failures of drivers to effectively 
timeshare and balance the demands of the roadway with those of in-vehicle tasks 
results in decrements in driving performance that can be labeled as distraction.  Task 5 
(Cognitive Distraction) fits into the SAVE-IT program by examining the nature of 
cognitive distraction so that estimates of distraction can be used to adapt the vehicle 
and reduce distraction and its effects on driving safety (Task 4: Distraction Mitigation). 

Longer commute times, pressures for increased productivity, and increasingly powerful 
technology all stimulate IVIS development.  In the United States, drivers have seen a 
steady increase in commute time, with a third of the 350 hours spent driving each year 
devoted to commuting (Hu and Young 1999).  Decreasing average speeds on freeways, 
the associated increase in traffic congestion, and an emphasis on increased productivity 
from employers have contributed to the pressure to make time in the vehicle more 
productive.  IVIS technology enables drivers to use driving time to do tasks otherwise 
done at the office, such as making telephone calls, managing email, and retrieving 
information.  Computing anytime, anywhere, and for anyone seems to be the slogan of 
the next phase of the technological revolution.  Market research firms estimate that the 
worldwide telematics market will grow dramatically in the next decade.  By the year 
2006, the world telematics market for personal vehicles is expected to be a $13 billion 
business, of which recurring annual revenues for services such as satellite-based digital 
area radio services (SDARS) broadcasters, XM Satellite Radio, and Sirius Satellite 
Radio will account for at least $4 billion (Viquez 2001).  By 2005, approximately 85% of 
new vehicles sold will offer telematics as a factory or dealer-installed option (Morri 
2001).  A provocative estimate of the growth of IVIS devices compares them to personal 
computers.  The number of personal computers per 1,000 people expanded from six to 
200 from 1980 to 1990.  A similar trend may occur in the next ten years, with IVIS-
equipped vehicles growing from four per 1,000 to 195-200 by 2010 (Juliussen and 
Magney 2001). 

Even without the widespread use of IVIS functions, approximately 6 million traffic 
accidents cause roughly 42,000 deaths and $150 billion in costs each year (Bureau 
1998).  Between 13 and 50 percent of crashes are attributed to driver distraction, 
resulting in estimates of as many as 10,000 lives lost and as much as $40 billion in 
damages each year (Sussman, Bishop et al. 1985; Wang, Knipling et al. 1996; Stutts, 
Reinfurt et al. 2001).  Driver inattention is a particularly large contributor to rear end 
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collisions, where it is sited as a contributing factor in approximately 60% of such 
collisions (Knipling, Mironer et al. 1993).   

The cognitive demand of cellular phone conversations and their contribution to driver 
distraction is well documented.  Cellular phone use can cause marked changes in the 
visual inspection patterns of drivers, such as reduced inspection of the mirrors, 
roadway, and speedometer (Recarte and Nunes 2000).  Cellular phone use also causes 
an increase in the latency of reaction time to driving events (Alm and Nilsson 1994; Alm 
and Nilsson 1995), degrades perceptual judgments (Brown, Tickner et al. 1969) and 
undermines decision making (Cooper, Zheng et al. 2003).  Hands-free cellular phones 
may help to alleviate the physical demands on the driver, thus reducing driver 
distraction and increasing driver performance.  However, hands-free cellular phones 
may not reduce crash risk (Redelmeier and Tibshirani 1997) and can still impair braking 
response (Lamble, Kauranen et al. 1999).  Not only do holding and dialing the phone 
undermine driver performance, but the cognitive demands of conversation also distract 
drivers’ attention from the road.  Many other types of in-vehicle technology may also 
demand drivers’ attention and pure speech interaction with these devices can also 
result in levels of cognitive distraction that can impair driving performance (Lee, Caven 
et al. 2001). 

Because distraction is a substantial contributor to crashes, particularly to rear end 
collisions and the distraction potential of cognitive demands are well documented, the 
increasing prevalence and complexity of in-vehicle technology will likely increase the 
safety problems of distraction.  A promising strategy to address this problem is to 
measure the degree of distraction in real time and use it to guide adaptive in-vehicle 
technologies to mitigate the effects of distraction.  To address this goal, this report 
reviews previous efforts to create adaptive systems.  It also identifies a theoretical basis 
for predicting distraction using these variables, defines variables that might predict 
distraction (e.g., gaze variability, steering entropy, and infotainment device state), and 
examines potential algorithm alternatives that can be used to estimate distraction-
related reaction time decrements in an unobtrusive, timely, and accurate manner.  This 
review concludes with a description of two experiments that could help resolve issues 
regarding distraction measurement and prediction.  Specifically this report includes the 
following sections: 

5.1 OBJECTIVES AND OVERALL APPROACH 
5.2 ADAPTIVE AUTOMATION AND DISTRACTION MITIGATION 
5.3 DISTRACTION AND WORKLOAD 
5.4 THEORETICAL BASIS FOR INVESTIGATING COGNITIVE DISTRACTION 
5.5 INTEGRATED MODEL OF DISTRACTION 
5.6 MEASURES OF DISTRACTION 
5.7 ALGORITHMS FOR PREDICTING DISTRACTION  
5.8 POTENTIAL EXPERIMENTS 
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5.2 OBJECTIVES AND OVERALL APPROACH 
The objective of this task is to identify diagnostic measures of cognitive distraction and 
develop an algorithm that uses these measures to predict decrements in driving 
performance.  Driving performance is operationalized as the reaction time to driving 
events that require a response by the driver.  Figure 5.1 shows the general strategy 
adopted to predict decrements in reaction time that might result from cognitive 
distraction.  Three distinct sources of data will be combined: driver state variables, 
including measures of eye gaze and physiology; driver performance variables, including 
measures of steering and speed control; and in-vehicle information system state 
variables, including expected cognitive transactions associated with particular 
interactions with the IVIS(s).  In addition to these variables, it is important to consider 
characteristics of the driving environment (e.g. type of road, weather conditions, traffic 
density); however, these roadway characteristics will be addressed in Task 2 (Driving 
Task Demand).  The underlying assumption of this strategy is that each variable alone 
will be a moderate predictor of distraction-related reaction time decrements, but in 
combination they will be a strong predictor of distraction. Figure 5.1 shows that good 
estimates of cognitive distraction can also predict other driver performance decrements, 
such as speed and position control and event detection; however, the current project 
will focus on estimating the effect of distraction on reaction time.   
 

 
 

Figure 5.1. Convergent measures of cognitive distraction combine to predict 
reaction time decrement. 

 

Once decrements of driver reaction time can be estimated, adaptive information 
displays and other distraction mitigation strategies can be implemented.  For example, 
warning thresholds of collision warning systems could be adjusted to compensate for 
increased driver reaction time associated with periods of high levels of cognitive 
distraction.  The particular mitigation strategies and the role of the distraction estimates 
in guiding these strategies fall outside the scope of this task; these are, however, 
addressed by Task 4 (Distraction Mitigation). 
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5.3 ADAPTIVE AUTOMATION AND DISTRACTION MITIGATION 
This project is not the first to consider how technology might be used to measure and 
overcome problems of driver distraction, workload, and fatigue.  Numerous research 
programs in the past fifteen years, both in the United States and abroad, have 
investigated the issues of driver workload and distraction and have explored ways to 
enhance driver safety through improved technology.  A recent review compiled by TNO 
Human Factors, considered research regarding workload management systems that 
monitor driver, vehicle, and roadway state to assess driver workload and adjust vehicle 
systems accordingly (Hoedemaeker, de Ridder et al. 2002). The review identified 
several projects sponsored by the European Union (EU) and two non-EU projects with 
research focused in these areas.  An initiative named Generic Intelligent Driver Support 
(GIDS) had the overall objective to assist drivers by controlling the flow of information 
from various systems to the driver.  The integrated driver support system utilizes a 
central Analyst/Planner made of two modules, the Maneuvering and Control Support 
Model and the Workload Estimator, to control the timing and display modality of 
messages presented to the driver.   Evaluation of this prototype found that, in general, 
driver workload was less when the support and information system was integrated than 
when it was not.  GIDS studies also found that visual and cognitive workload were most 
influenced by traffic situation.  A follow-up to the GIDS initiative, a project named 
Application of Real-time Intelligent Aid for Driving and Navigation Enhancement 
(ARIADNE), expanded the GIDS system and found that in addition to situation, driver 
experience and age contribute to visual and cognitive workload.   

The project named Integration of Navigation and Anticollision for Rural Traffic 
Environment (IN-ARTE) sought “to improve traffic safety in rural environments” with an 
integrated driver support system designed to combine information from radar, sensors, 
and navigation maps in order to create an “extended view of the environment in front of 
the vehicle.”   Experiments to investigate the effects of tactile versus speech messages 
found that speech messages caused momentary but rather large increases in workload 
while tactile messages did not.  Experiments investigating driver acceptance of brake 
intervention and various warning threshold levels were also conducted.  In general, 
drivers rated the brake intervention system positively, but they also tended to adopt 
longer headways, possibly to prevent the interventions.  Drivers rejected all warnings of 
speed limit violation and ratings for upcoming curve warnings were most positive when 
the timing was such that the deceleration level was approximately 2 m/s2.  Ratings for 
warnings of a braking lead vehicle or obstacle ahead were also most positive when the 
deceleration criteria were 2 m/s2 to 4 m/s2.   

A fourth EU-sponsored program identified by TNO, the Communication Multimedia UNit 
Inside CAR (COMUNICAR) project, set out to design and test a multimedia interface to 
control the timing and type of messages presented to the driver.  The system includes 
an Information Manager and a Driver Workload Estimator, and both visual and haptic 
multimedia layouts were developed.  Early testing results showed that both layouts were 
candidates for further development and a task-by-task analysis found that workload is 
influenced more by the type of task to be performed than by the type of interface.  
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DAISY, an adaptive, knowledge-based Driver Monitoring and Warning System (Onken 
1994), part of the PROMETHEUS project, includes a learning module to create a 
behavior model of each driver and then uses this model to deliver warning messages 
adapted for that particular driver.  Experiments in a fixed-based driving simulator and a 
test vehicle equipped with computer vision found a number of encouraging results, 
including the feasibility of monitoring and warning using computer vision data and, if 
enough learning time is allowed, and the feasibility of modeling the behavior of 
individual drivers.  The haptic warning led to greater safety in situations where 
distraction was likely to occur.  The results also showed that drivers demonstrated “risk 
compensation effects” by adapting to the warning system.  Risk compensation is an 
important issue that should be considered when designing systems to increase driver 
safety.   

The final project identified in the TNO review as relevant to research in the areas of 
driver workload and distraction and improved driver safety is the Co-DRIVE program, 
which uses a “Supremely Intelligent Co-driver Interface” to estimate the traffic risk, 
estimate workload, and set message priorities.  The system uses an open platform so 
that each sub-system or service can present the driver with its own interface through the 
overall Co-Drive interface, which can disable certain services if the risk for distraction is 
too high.  The TNO review does not discuss any results of the Co-DRIVE program.  

Overall, the TNO review concluded that many of the European projects reject the 
practice of estimating a driver’s momentary workload, due to the complexity of this 
method, opting instead for one or a combination of two other possible methods.  The 
first is the possibility of estimating driver workload from driver behavior.  The second is a 
look up table that relates factors affecting workload, such as characteristics of the driver 
and the driving environment, to estimate levels of workload.  Our approach illustrated in 
Figure 5.1 encompasses all three methods, aiming to monitor workload through the 
convergence of real-time driver physiology and performance measures as well as the 
workload demands associated with IVIS interactions.         

The TNO review also highlights system intervention (i.e., when the system takes over 
part of the driving task, such as steering or braking) as a particularly important 
challenge.  These types of mitigation strategies have not been popular with car 
manufacturers due to liability in the event of failure or malfunction.  Finally, the review 
points out that little attention has been given to studying the acceptance of such 
adaptive systems.  Driver acceptance should be considered both during the detection 
and the mitigation of driver distraction. 

Several electronics and automotive companies have also initiated separate approaches 
to workload management systems.  As an example, Motorola has created the Driver 
Advocate, which monitors a wide range of information from the driving environment as 
well as driver behavior and state variables to identify appropriate advice and alerts.  
Like the SAVE-IT program, the ultimate aim of this system is to predict driver distraction 
and focus the driver’s attention on the task that is the most important for safety.  
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Beyond the automotive domain, substantial research has addressed the concept of 
adaptive automation (Rouse 1976; Chu and Rouse 1979).  Adaptive automation adjusts 
the degree of automation to compensate for the limits of the human controller.  For 
example, automation aiding a pilot might take over some flight tasks if the pilot becomes 
overburdened and unable to complete them.  As in this project, the objective of many of 
these systems has been to use physiological variables, such as heart rate, skin 
conductance, and EEG signals, to estimate workload (Prinzel, Freeman et al. 2000; 
Scallen and Hancock 2001).  Although the focus of much of this research has been on 
estimating operator workload so that automation can be engaged to avoid overload 
situations, adaptive automation has also been considered for situations in which the 
problem is underload rather than overload.  In these situations, monitoring for underload 
situations and then returning control to the operator can enhance performance (Byrne 
and Parasuraman 1996).  These issues are explored in more detail in the review of 
distraction mitigation strategies as part of Task 4. 

In conclusion, this previous research identifies several issues to consider when devising 
a method for detecting driver distraction.  These include: 
 

• Driver characteristics such as age and level of experience, both with the driving 
task and with the various IVISs, seem to be very important.   

• Driver adaptation to the IVISs such that the safety benefits are eroded as drivers 
take advantage of the increased ability to do non-driving tasks as they drive.   

• The use of driver-specific models for detecting and mitigating distraction should 
be considered.   

• Driver variables should be monitored for signs of both overload and underload, 
particularly as vehicle automation (e.g., adaptive cruise control) reduces drivers’ 
vehicle control interactions.  

• The demands of the IVIS, including the types of tasks drivers perform with them 
as well as modality the tasks are displayed in, play an important role in 
momentary driver workload.   

• The extent to which the different IVIS devices are integrated has important 
implications for the cognitive demand they impose on the driver.  

• Finally, driver acceptance of a device to detect and mitigate distraction is critical 
so that the system will not be subject to misuse or abuse.   

 
Given the scope of these considerations, our approach of measuring distraction by 
considering a wide variety of driver physiological and performance measures along with 
the IVIS state seems appropriate.  The following section describes types of distraction 
and explores the relationship between workload and distraction. 

 

 5-17



5.4 DISTRACTION AND WORKLOAD 
Distraction occurs when a driver “is delayed in the recognition of information needed to 
safely accomplish the driving task because some event, activity, object, or person within 
or outside the vehicle compels or induces the driver’s shifting attention away from the 
driving task” (Stutts, Reinfurt et al. 2001).  Several other researchers have gone beyond 
this definition of distraction to specify the particular ways in-vehicle devices distract 
drivers.  Visual and manual demands are particularly important contributors to 
distraction, which can be separated into five categories according to the degree of 
visual and manual involvement:  manual only, visual only, visual primarily, manual 
primarily, and visual-manual (Wierwille 1993).  Manual only tasks require no visual 
confirmation after they are learned.  Turn signals and other simple controls are good 
examples of manual tasks that make no visual demands.  Other interactions make 
visual and manual demands.  One example of this is tuning the radio, which requires 
visual glances to the display and manual adjustment of the tuner.  The visual 
component of these tasks degrade both vehicle control and the detection of objects and 
events in the driving environment, and the manual component can interfere with 
steering and lateral control (Tijerina 2000).   

The simple combinations of visual and manual contributors to distraction have been 
expanded upon by more recent descriptions of distraction.  Ranney, Mazzae, Garrott, & 
Goodman (2000) identified four components of driver distraction: (1) visual (e.g., eyes-
off the roadway), (2) auditory (e.g., conversing with other passengers), (3) 
biomechanical (e.g., manually adjusting the radio), and (4) cognitive (e.g., being lost in 
thought).  Manual distraction or biomechanical interference is caused by the driver’s 
“body shifts out of the normal position” while performing tasks such as reaching for 
controls or a cell phone, eating, or smoking (Tijerina 2000).  The interference associated 
with cognitive distraction occurs even in the absence of structural interference that 
occurs when drivers take their eyes off the road or remove their hands from the steering 
wheel.  Cognitive distraction will be the focus of this review, but because purely 
cognitive distraction is unlikely, it is important to consider the potential interactions 
between the different types of distraction. 

Cognitive distraction occurs when cognitive activity (e.g., working memory, long-term 
memory retrieval, response selection, or executive control) associated with a non-
driving task interferes with perception, processing, and/or response to the roadway 
environment.  This definition of cognitive distraction is consistent with the more general 
types of distraction and will guide and delimit the analysis of how cognitive distraction 
can be measured and reduced.  One important implication from this definition is that 
distraction itself cannot be measured.  Distraction is a relational property between the 
driver’s cognitive activity, the demands of the driving tasks, and the demands of the IVIS 
tasks.  

Distraction and driver workload are two terms that are interrelated and many 
researchers equate cognitive distraction with mental workload or information overload.  
Several recent research programs have addressed distraction from the workload 
perspective for in-vehicle system design.  Three of these programs have specifically 
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tried to address the potential of IVISs to distract drivers through overload: GEM, IVIS 
DEMAnD, and HASTE.  A fourth program within the Crash Avoidance Metrics 
Partnership (CAMP) also aims to develop workload metrics to be applied to IVIS design. 

The EU-sponsored Generic Evaluation Methodology for integrated driver support 
applications (GEM) project set out to create a method for assessing how new driver 
support systems might affect driver performance and what effect different combinations 
of systems could have on performance.  GEM identified numerous methods to evaluate 
a system based on the characteristics of its interface and considered at what 
developmental stages different evaluation methods could be used, the costs of applying 
different methods, as well as how long system interaction lasted and the level of 
“loading” the system imposes on the driver.   Although the compiled information about 
the available evaluation methods is useful, the TNO review concludes that the GEM 
Project did not meet its objective of creating a generic methodology to evaluate of 
integrated support systems (Hoedemaeker, de Ridder et al. 2002).   

The In-Vehicle Information System Design Evaluation and Model of Attentional Demand 
(IVIS DEMAnD) project had a goal similar to GEM’s.  It set out to help IVIS designers 
estimate how much demand their prototype systems would place on drivers.  The IVIS 
DEMAnD software allows the user to identify one or more of five different resources that 
IVISs can require: visual demand, auditory demand, supplemental information 
processing demand, manual demand, and speech demand.  The application also 
contains a library of tasks, and a wizard can help the user define a new task if it is not 
currently in the library.  Finally, the user identifies parameters of the design that can be 
modified, and the software presents conceptual measures of relative driving task 
performance and a demand measures summary (Monk, Moyer et al. 2000).   

Another European research program currently in progress, the Human Machine 
Interface And the Safety of Traffic in Europe (HASTE) Program, has the objective “to 
develop methodologies and guidelines for the assessment of In-Vehicle Information 
Systems (IVIS)” (HASTE 2003).  The program will consider the risk associated with 
using an IVIS in different traffic conditions, “identify the best indicators of risk,” and 
“recommend a pre-deployment test regime … to predict performance.”  The aim of this 
program is quite similar to the ongoing collaboration between Ford Motor Company, 
General Motors Corporation, and others to develop driver workload metrics as part of 
CAMP.  The objective is to “develop practical, repeatable driver workload metrics for 
both visual and cognitive demand that can realistically assess which types of driver 
interface tasks are appropriate to perform while a vehicle is in motion. It will then identify 
interface design approaches which emerging collision avoidance and comfort and 
convenience oriented information systems might employ in order to provide acceptable 
workload performance ratings” (CAMP 2000).   

As defined by Hart and Wickens (Hart and Wickens 1990), “workload is a general term 
used to describe the cost of accomplishing task requirements for the human element of 
man-machine systems.  This ‘cost’ may be reflected in the depletion of attentional, 
cognitive, or response resources, inability to accomplish additional activities, emotional 
stress, fatigue, or performance decrements.”  Many argue that mental workload is 
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synonymous with effort (Moray 1979; Moray 1988).  As Figure 5.2 shows, workload and 
performance are dependent upon the task demands presented by a specific system and 
the strategy chosen by each operator for that specific situation (Hart and Wickens 
1990).  For example, drivers may adopt different control strategies or accept lower 
performance (e.g., relax the safety margin and allow the car to get closer to the lane 
boundary) to keep effort constant when they engage in IVIS tasks.  Alternatively, they 
may reduce their effort, shift attention to the IVIS task, and neglect the roadway 
demands.     

 

 
 

Figure 5.2. Conceptual framework relating operator performance and workload  
(Hart and Wickens, 1990). 

 

Figure 5.3 shows how effort, driving safety (maintaining safety boundaries), and 
productivity (degree of engagement with IVIS tasks) might relate.  For a given level of 
effort, drivers could achieve various degrees of safety or IVIS productivity.  Likewise, 
increasing effort could lead to higher levels of IVIS productivity and/or safety depending 
on the feedback available to the driver and the driver’s internal performance criteria and 
values.  This figure demonstrates that treating drivers as passive recipients of the IVIS 
demands will not predict distraction-related decrements in driving safety. 
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Figure 5.3. An example of how driving safety might decline when workload (effort) 
declines if a driver (shown by the dashed line) decides to allocate effort towards IVIS 
tasks rather than driving, compared to another driver (shown by the solid line) who 
suffers a higher workload, but focuses on driving and is safer as a result. 
 

Although the interference of multiple in-vehicle and driving tasks can lead to distraction 
and the neglect of driving tasks, high levels of workload or information overload do not 
explain all distraction-related decrements in driving performance.  In fact, distraction and 
an associated decrease in performance can occur with low workload levels.  The 
relationship between performance (dashed line) and operator effort (solid line) for a 
specific set of task demands is seen in Figure 5.4.  In region D, the low task demands 
undermine performance as drivers work to overcome boredom and maintain vigilance.  
As the level of demand increases, region A1 is entered and operator workload 
decreases as the additional tasks demands reduce the effort to stay engaged with the 
driving task.  Region A2 is the region in which performance and effort remain steady as 
demand increases.  Throughout region A3, increased operator effort is required to 
maintain a high performance level with increasing task demand.  Finally, the demands 
become so high that the operator cannot maintain performance despite increased effort 
and so regions B and C are encountered.  Regions B and C are of concern when 
considering distraction caused by the overloading of cognitive resources, while region D 
represents the challenge drivers face when trying to remain vigilant to rare, but 
important events, such as a braking lead vehicle on an interstate highway.  
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Figure 5.4. Operator performance and effort as a function of task demand 
(de Waard, 1996). 

 
Although cognitive distraction can be the result of either overload or underload, it is 
clear that these conditions occur as the result of very different situations and manifest 
themselves differently. Thus, it seems logical that the detection of cognitive distraction 
as the result of overload might require different information or methods than the 
detection of cognitive distraction resulting from underload.  It also seems useful to make 
a distinction about what cognitive processes are at the root of the distraction in order to 
determine if mitigation is required and if so, how the mitigation should take place.  For 
example, if a driver is experiencing capacity overload, distraction might be revealed by 
physiological measures associated with stress or high levels of arousal.  The mitigation 
strategy for a driver in this situation may be different than the mitigation strategy for a 
driver who is distracted through underload. 
 
The problems of excessively high and low task demand identify important 
considerations for the measurement of distraction and its mitigation.  The mechanisms 
associated with how drivers accommodate these extremes may help reconcile potential 
dissociations between variables related to distraction and prediction of reaction time 
decrements.  In particular, multiple resource theory (MRT) offers a powerful framework 
for understanding likely situations where cognitive tasks will exceed drivers’ capabilities 
and interfere with safety-critical driving tasks (Wickens 1984; Wickens 2002).  Issues of 
overload that are the focus of MRT are not the only contributors to distraction; 
underload is also important, particularly as automotive automation becomes increasing 
capable.  The concept of malleable attentional resource theory describes the cognitive 
mechanisms associated with underload and workload transitions from underload to 
overload that also contribute to problems of distraction (Young and Stanton 2002a; 
2002b).  Current research regarding distraction tends to focus on excessive levels of 
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workload as a basis for distraction.  Taking into account the concept of workload more 
generally identifies the following considerations that must be examined to better 
understand distraction: 
 

• Workload depends on multiple aspects of the task(s) (e.g., visual, manual, and 
cognitive components). 

• Both the environment and the system contribute to the demands that confront the 
driver. 

• Control strategies and performance criteria greatly influence the level of effort 
expended and workload experienced by the driver. 

• Withdrawal of effort from driving tasks and focus on IVIS tasks can degrade 
safety without any indication of information overload. 

• Conditions of underload can lead to distraction-related performance decrements, 
particularly transitions from underload to overload situations. 

 
The following section provides a theoretical basis for measuring, predicting, and 
mitigating cognitive distraction.   
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5.5 THEORETICAL BASIS FOR INVESTIGATING COGNITIVE DISTRACTION 
When drivers perform other tasks while driving, such as interacting with passengers, 
using an IVIS, talking on a cell phone, or eating, they are engaged in multi-tasking.  If 
perfect timesharing takes place, all the tasks will be performed at the same level as if 
they were each performed alone.  Many times, however, performance on one or more of 
the tasks is compromised.  If the driving task is one of these, there can be serious 
safety consequences.  A large body of research has addressed dual-task performance, 
the simplest instance of multi-task performance.  Several theories of attention and 
workload have been proposed to explain the performance decrement that sometimes 
occurs during dual-tasking, including single channel and multiple resource theories, 
malleable attentional resource theory, and strategic task management.  All provide 
insight into the mechanisms underlying the problems of cognitive distraction.   

5.5.1 Multiple resource description of dual-task performance 

A long history of dual-task performance research provides a foundation for considering 
driver distraction.  Telford (1931) discovered that as the interval between two presented 
stimuli decreased, the response time for the second one increased.  Telford called this 
slowing the psychological refractory period (PRP).  Craik (1948) presented participants 
with a continuous tracking task which they completed using discrete movements.  Craik 
accounted for this behavior by proposing the occurrence of a central “computing” 
process that is either delayed by new incoming information or somehow blocks it out.  
He concluded, “there is a minimum interval within which successive stimuli cannot be 
responded to.”  Five years later, Welford (1952) stated that central mechanisms can 
only deal with information from one stimulus at a time.  These and other early theories 
were global single-channel hypotheses that did not identify what particular processes 
between stimulus presentation and response execution were included in the central 
processes that led to the response delay.  Subsequent research has provided evidence 
for and against placing the bottleneck at different stages, including perception, response 
selection, and movement production (for a review, see Meyer and Kieras 1997; Pashler 
1998).  Since the exact location of the bottleneck could not be located, Kahneman 
(1973) proposed that a general-purpose processing capacity, namely attention, could be 
allocated to different processes.  However, this unitary resource theory predicted that 
interference would occur even if two activities did not share perceptual or response 
mechanisms, a prediction that has been refuted through the near perfect timesharing of 
multiple tasks.  To account for these data the theory of multiple resources was 
developed (Wickens 1984).  

Wickens developed multiple resource theory (MRT) by reviewing the literature 
pertaining to dual-task performance and identifying “the particular structural dimensions 
of human information processing that meet the joint criteria of accounting for changes in 
time-sharing efficiency, and being associated with neurophysiological mechanisms 
which might define resources” (Wickens 2002).  With this approach, multiple and 
independent attentional limited capacity resources govern dual-task performance.  MRT 
states that there are resources located on several different dimensions that can be 
allocated to different tasks.  These resources are not singular in nature, but the capacity 
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of these resources is fixed.  A performance decrement in the dual-task situation is seen 
only if the tasks compete for the same resources.  Multiple resource models can be 
used to predict whether interference is likely or unlikely to occur in dual-task situations. 
One such multiple resource model, proposed by Wickens (2002) and represented in 
Figure 5.5, has four dichotic dimensions.   

 
Figure 5.5. Three-dimensional representation of the structure of multiple resources.  

The fourth dimension (visual processing) is nested within visual resources 
(Wickens, 2003). 

 
The first dimension is the perceptual modality required for each task.  The two 
components of the dichotomy are the auditory and visual channels.  Two tasks requiring 
visual perception, such as driving and reading a map, heavily compete for visual 
resources.  Trying to discriminate between two streams of auditory messages is quite a 
difficult task, as the streams will tend to mask one another.  However, if information for 
one task is presented visually while information for the second task is presented through 
an auditory channel, then improved dual-task performance with less interference is 
likely to be seen.  Nested within the visual perceptual modality are focal and ambient 
vision resources of the visual processing dimension.  Focal vision is necessary to 
recognize fine details and patterns while ambient vision “is used for sensing orientation 
and ego motion.”  These resources aid a driver in maintaining lane position while 
fixating on a roadside sign or checking mirrors. 

The third dimension is the modality in which information is coded, with the two 
resources being verbal or spatial coding.  Since driving is primarily a spatial task, MRT 
would suggest the use of verbal coding for any secondary task.  The spatial and verbal 
coding resources also tend to correspond to manual and verbal response, respectively.  
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An example of the kind of interference that can occur when two tasks share the same 
coding can be seen when one tries to read and listen at the same time.  While the two 
tasks use separate perceptual resources, both are coded verbally. 

The fourth dimension is the level of perceptual processing required to complete each 
task.  The processes of perception and cognition use different resources than the 
selection and execution of responses.  Thus a stimulus can be perceived and identified 
while a response to another stimulus is prepared and executed.  However, the resource 
for response selection can only be allocated to one task at a time.  This observation is 
complementary to Pashler’s (1998) finding that a bottleneck occurs at the stage of 
response selection, which he calls “central processing.”  Pasher found that two 
independent responses cannot be selected at the same time, while perception of 
another stimuli or execution of another response can occur concurrently with response 
selection.  This dimension is particularly important for predicting driver distraction 
because it suggests that activities that require response selection will interfere with each 
other to a great degree, even if they are perceived and responded to using different 
resources.  Specifically, a task such as listening to an audio book that does not require 
response selection should not interfere with driving as much as participating in a 
conversation, as both the conversation and driving tasks require responses from the 
driver.  Findings by Strayer and Johnston (2001) confirm this prediction, as participants 
performed significantly worse on the driving task while in a conversation condition as 
compared to a condition where they listened to a book on tape for comprehension.  
Thus, this bottleneck can have an impact on two tasks even when they do not share 
perceptual or coding resources. 

The assumption of multiple tasks competing for limited resources contained within this 
theory is a powerful heuristic for describing dual-task decrements.  More generally, this 
perspective of resources of limited capacity provides the theoretical basis of most 
descriptions of workload.  This approach can be used to predict driver distraction 
caused by conflict between specific driving maneuvers and certain in-vehicle tasks.  For 
example, while focal vision is required to read a visually presented in-vehicle message, 
ambient vision can be used to maintain lane position.  However, the performance of 
event detection, part of the driving task that requires focal vision, would be expected to 
suffer.  

Quantitative models of driver performance have used MRT to predict the effect of 
different types of distraction.  For example, Boer (2001) described twelve non-driving 
tasks according to the types of resources they demanded.  Driving performance, as 
defined by steering behavior and reaction time to unpredictable events, was measured 
as drivers completed each of these twelve tasks.  Consistent with the MRT, he found 
that tasks that demand spatial resources tend to affect steering performance most and 
tasks that demand verbal resources tend to have the greatest effect on event detection.  
Interestingly, most of the control interference depended on the response/execution 
stage of the tasks, which is consistent with Pashler’s (1998) assertion that performance 
is limited by a response bottleneck.   
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One of the primary assumptions of MRT is that resources have a fixed capacity that 
remains constant over time.  Recently this assumption has been questioned, as 
decreased performance has occurred in situations with reduced task demands.  These 
results contradict the MRT prediction of increased performance with decreased 
demand.  However, if resource capacity does indeed fluctuate over time, extended 
periods of decreased demands may lower resource capacity.  A recent theory, 
malleable attentional resource theory (Young and Stanton 2002b), suggests just that, 
and the factors that reduce capacity may be important contributors to the problem of 
driver distraction.    

5.5.2 Malleable attentional resource theory 

Malleable attentional resource theory describes the factors that can diminish resource 
capacity and predicts performance decrements that the mental overload approach to 
distraction does not.  While MRT is useful in predicting cases where mental workload 
required by task demands may exceed the available attentional resources to produce 
overload performance decrements, it fails to account for situations where poor 
performance is seen despite low task demands.  Malleable attentional resource theory 
addresses the role of low mental workload on performance (Young and Stanton 2002b).  
The theory proposes that the level of available attentional resources is flexible instead 
of fixed, and in situations of low workload attentional resources will shrink to 
“accommodate any demand reduction.”  This concept is shown in Figure 5.6.  If the 
operator is working on a high demand task when a failure event occurs, the level of 
attentional resources available is sufficient to handle the event.  However, if the capacity 
of attentional resources has been reduced due to a low demand task, the operator will 
not be able to handle the failure event. 

In order to test the malleable attentional resource theory, Young and Stanton (2002b) 
performed an experiment which tested performance on a visual-spatial secondary task 
while varying driver workload on a simulated driving task through various levels of 
automation: manual, adaptive cruise control (ACC) which controlled headway, 
automated lateral control (AS), and ACC+AS (fully automated).  Participants were told 
that driving was the primary task and that the secondary task should be performed only 
when the driving task allowed.  In order to determine whether or not the drivers’ 
attentional capacity changed with workload, a measure called the attention ratio (AR) 
was derived from the secondary task data with the following formula: 

ondsintaskondaryperformtotime
trialstaskondarycorrectofnumber

AR
secsec

sec
=  

The AR values for the manual and the ACC conditions were not significantly different, 
but a significant decrease was found between the ACC and AS conditions, and between 
the AS and the ACC+AS conditions, suggesting that “the allocation of attention to the 
secondary task becomes less efficient” as mental workload decreases.  Since the 
“participants’ responses on the secondary task did not vary consistently with the amount 
of attention they directed to the task,” the authors concluded that the size of the 
resource pool can change.   
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Figure 5.6. Pictorial representation of performance differences under a malleable 

attentional resources hypothesis (Young and Stanton, 2002a). 
 

While this theory shows great promise in explaining the effects of driver distraction in 
the form of attentional withdrawal, further research needs to be conducted for a number 
of reasons.  First, the reduced mental workload was not shown to have an effect on 
driving performance, most likely since only normal driving tasks and not emergency 
situations were investigated.  Second, the authors acknowledge that the results 
obtained could have been the product of arousal alone and more research is needed to 
discover the role of arousal in determining resource capacity.  Third, it is unclear 
whether the capacity of all resources are affected equally by lowered demand or 
whether certain resources are more susceptible.  Finally, the mechanisms through 
which or the speed at which the attentional capacity modulates are not described or 
investigated.   

Despite the many unknowns the theory has yet to answer, the main ideas behind 
malleable attentional resource theory pose important considerations for an algorithm to 
predict distraction.  If the capacity of attentional resources can indeed change in a 
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relatively short-term time period, the history of the driver state may play an important 
role in the prediction of driver distraction.   For example, performance in a low demand 
situation followed by a high demand situation would be predicted to be worse than when 
a high demand situation is followed by a period of low demand.  Thus, accurate 
predictions of distraction might need to consider how attentional resources may shrink 
during long low-demand periods, making the degree of distraction greater when driving 
demand increases abruptly.  Such time-dependent effects cannot be accounted for by 
MRT.  Issues like this are also important to consider when implementing mitigation 
strategies.  

As an example findings that support malleable resources, Desmond, Hancock, and 
Monette (1998) exposed participants different levels of engagement in a driving 
simulator and then monitored their recovery to disruptions.  In one condition drivers had 
complete control of the driving task while in the other condition the driving task was 
“controlled by an automated driving system.”  During each drive participants 
experienced disruptions, drifts from the roadway caused by wind gusts in the manual 
control condition and a failure of the automation system in the automated condition.  
Disruption recovery was better for the manual control condition than for the automated 
condition.  These results correspond to the conceptualization of the malleable resource 
theory shown in Figure 5.6.   

Although multiple and malleable resource theories provide a useful basis for 
understanding how driving and in-vehicle tasks interact to create distraction-related 
decrements in driving performance, they both focus on how attentional resources are 
shared in a dual-task scenario.  These theories make several important assumptions 
that may be violated in many real-world driving situations and fail to address several key 
factors affecting multi-task performance.  For example, most research supporting 
resource-based descriptions of human performance involve dual-task situations; 
however, driving and interacting with one or more IVIS creates a much more complex 
situation.  Driving alone involves multiple tasks including: navigation, visual search for 
landmarks, hazard detection, speed selection, speed control, lane selection, and lane 
keeping.  In-vehicle tasks can be similarly complex and diverse.  The distraction-related 
decrements in driving may not be predicted by performance decrements of two simple 
tasks.  Some important features of complex, multi-task environments that resource-
based theories do not consider include:   

• Task prioritization and the decision to engage in non-driving tasks 
• Task preemption and attentional withdrawal 
• Task scheduling and task switching rather than parallel processing performance 
• Task complexity and its influence on task switching 
• The effect of in-vehicle task demands on multilevel goal management 
 

These important considerations are not addressed by resource based theories of multi-
task performance but are considered under the general topic of strategic task 
management.  
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5.5.3 Strategic task management 

The concept of strategic task management has been used by several researchers to 
describe decrements in multi-task performance in complex domains, such as aviation 
(Wickens 1984; Funk 1991; Funk and Kim 1995; Chou, Madhavan et al. 1996) and 
manufacturing (Moray, Dessouky et al. 1991).  In the driving domain, a model of driver 
workload management was adopted for the Heavy Vehicle Driver Workload 
Assessment project instead of a traditional limited capacity resource model of mental 
workload (Wierwille, Tijerina et al. 1996).  “Sandra Hart (1989) has been one of the 
most vocal proponents for such a shift in the workload domain.  Her arguments are 
based on the premise that people ‘actively manage their time, energy, and available 
resources to accomplish tasks on time and with adequate performance and, at the 
same time, to maintain a comfortable level of workload.  To do so, they dynamically 
modulate their priorities, strategies, focus of attention and effort…’“ (Adams, Tenney et 
al. 1991).  Hart and others identified several reasons why the traditional laboratory 
approaches to investigating workload are artificial and may not address some aspects 
of the complex multi-task activity of driving, including (Hart 1989; Adams, Tenney et al. 
1991; Wierwille, Tijerina et al. 1996): 

• Pushing people to work to their limits denies the opportunity to adopt realistic 
coping strategies.  

• Using trials measured in minutes rather than more realistic intervals of hours may 
misrepresent the level of effort people are willing to expend 

• Forcing people to respond in particular ways (e.g. immediately and consistently) 
may not reflect the flexibility that exists in many driving situations 

• Homogenous demands do not reflect the sequential, overlapping demands of 
various magnitudes with various costs and benefits that confront drivers. 

 
Although dual task research and MRT do not address the full range of factors affecting 
the driver’s ability to share driving and non-driving tasks, they provide a useful 
complement to the workload management approach.  The driver workload management 
approach focuses on prioritization, scheduling, and effort allocation in balancing the 
demands of driving and in-vehicle tasks.  This approach considers the factors that 
govern how drivers to divide their effort between the roadway and in-vehicle tasks and 
how the ability to switch between these tasks depends on the duration of the tasks, their 
complexity, how easily they can be interleaved, and how easily a task can be delayed 
and later resumed.  Complementary research considering how drivers share their visual 
resources between the driving scene and an in-vehicle task has been completed.  A 
simple task management model concerning the practice of visual sampling was posited 
by Wierwille (1993) and is shown in Figure 5.7. 
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Figure 5.7. Model of visual sampling for in-vehicle tasks that shows the importance of 
strategic management of driving and in-vehicle tasks (Wierwille 1993). 
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This normative, deterministic model starts when the driver begins performing an in-
vehicle task by glancing to an appropriate location.  Information extraction begins as 
time elapses.  If drivers can chunk information in one second or less, they will return 
their glance to the forward scene.  However, if chunking takes longer, drivers will 
continue to glance at the location for a longer period of time.  If this occurs, uncertainty 
builds up and drivers feel pressured to return to the forward scene.  If the glance to the 
in-vehicle location continues up to approximately 1.5 seconds and the information 
cannot be obtained (or chunked), drivers will return their glances to the forward scene 
anyway and try again later.  Additional samples are handled in the same way, until all 
required visual information is obtained.  This simple model illustrates how the in-vehicle 
task characteristics interact with the driving demands and the driver’s ability to 
appropriately allocate attention to affect driving performance decrements.  Similar 
considerations need to be contemplated in the task management associated with 
cognitive demands.   
 
Strategic task management involves monitoring the environment and determining the 
significance this new information has for the driver’s goals, deciding whether to interrupt 
the current task and engage in another task, scheduling tasks in a queue according to 
priority, and evaluating and reorganizing the queue if necessary.  Memory and 
experience are also important, as a new experience causes the driver to determine its 
significance while a response to a familiar event is less effortful (Adams, Tenney et al. 
1991). 
 
The interpretation of information from the environment is a process that requires time 
and effort.  If too much time and effort are required, the task the driver is currently 
engaged in may be disrupted.  On the other hand, information might be interpreted 
incorrectly if too little time and effort is put forth, causing the driver to misclassify the 
information and its relevance in relation to his or her goals (Adams, Tenney et al. 1991).   
 
After environmental information is interpreted, the driver must use this information to 
decide whether or not to switch tasks.  People tend to avoid interrupting a current task, 
even if there are benefits to doing so (Wood 1982; cited in Adams, Tenney et al. 1991).  
After a person decides to interrupt a task, their memory for the interrupted task persists 
and the person is predisposed to return to the task, an effect described by Ziegarnik.  
People remember the details of the task no less even if they know they will not resume 
the task (Zeigarnik 1965).  The implications of the Zeigarnik effect on driver workload is 
that once drivers begin a task there is a strong tendency to finish it if interrupted.  The 
tendency to complete an interrupted task grows with the relevance of the task to the 
driver’s current goals and interrupted tasks may continue to make demands on working 
memory (Wierwille, Tijerina et al. 1996). 

The actual mechanisms of task switching have been the focus of much research (e.g., 
Jersild 1927; Allport, Styles et al. 1994; Rogers and Monsell 1995).  Task switching 
experimental paradigms generally use one stimulus to evoke two different responses.  
For example, a red square can signal one response based on its color and another 
response based on its shape.  Which response is appropriate depends on whether the 
trial is a color trial or a shape trial.  When the current trial differs from the previous trial, 
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a decrement in response time and accuracy can be seen.  This decrement is commonly 
called the “switching cost.”  The research also shows that the switching cost can be 
reduced, but not eliminated, if one is able to prepare before the stimulus is presented.  
Two main theories have emerged to explain switching costs. The first argues that the 
cost of task switching can be described in terms of the tasks’ inertial properties.  The 
second argues that switching costs depend on the processes associated with retrieving 
condition-action rules.  

The Task Set Inertia (TSI) theory proposes that the switch cost occurs because the task 
set used on the previous trial before the switch must be inhibited following the switch 
(Allport, Styles et al. 1994).  TSI explains the unusual results that sometime occur when 
a person switches from a more practiced task to a less practiced task; the switch cost is 
larger in this case than if the same person switches from the more less practiced task to 
a more practiced task.  The larger cost is seen because one must use more effort to 
inhibit the more practiced task than the less practiced task.  Despite the ability to explain 
this unusual phenomenon, numerous faults have been found with TSI, including cases 
were there is no evidence of switching time cost when TSI should be present and cases 
were there is a switch-cost when TSI should not be present (Rubinstein, Meyer et al. 
2001). 

An alternative theory called Task Set Reconfiguration (Rogers and Monsell 1995) 
proposes that the switching cost occurs because of short- and long-term costs of the 
reconfiguration of mental resources to accommodate the new task (Monsell 2003).  
These reconfiguration costs can include shifting attention between stimulus features, 
conceptual criteria, goal states, and condition-action rules.  The cost of task switching 
can be mitigated if the person is able to prepare for the switch.  The benefit of 
preparation accrues because some of the task set reconfiguration can take place before 
the stimulus is presented.  Because preparation does not eliminate the switch cost, 
some of the reconfiguration must be completed after presentation (Rogers and Monsell 
1995).   

An important determinant of task switching performance is the executive control 
process, which may consist of two components (Monsell 2003).  The first is endogenous 
control, which depends mainly on the goals of the person and can be completed before 
the arrival of the stimulus.  The second is exogenous control and is triggered by external 
stimuli in the environment.  In the driving domain, the endogenous control might reflect 
the uncertainty buildup and associated discomfort that occurs when driving tasks are 
neglected.  This process is complemented by exogenous control, which occurs when 
safety margins are violated and external cues specify dangerous situations, such as the 
perception of brake lights of the preceding vehicle.  Given that switching cost occurs 
even when a long time is allowed for preparation, it seems that both processes are 
necessary for task switching. 

Most of the research on task switching is at a relatively low, microscopic task level.  At 
this level tasks are simple and last seconds rather than minutes.  The level at which 
actions are defined may have important implications for switching performance and task 
interruption.  Switching between higher level tasks, which are more complex and occur 
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over minutes rather than seconds, may depend on different factors than switching 
between simple tasks.  According to the Action Identification Theory proposed by 
Vallacher and Wegner (1987) people characterize their actions at different levels of 
meaning.  For example, “drinking coffee” could also be called “getting energized,” 
“drinking,” or “lifting a cup to my lips.”  Action descriptions are organized hierarchically 
with lower-level actions comprising the high-level actions.  For example, “drinking 
coffee” is a higher-level action description composed of several, more microscopic 
tasks, such as “lifting a cup.”  Action Identification Theory consists of three major 
principles.  The first is that people maintain an action in terms of its prepotent identity, 
which is used to define the performance criteria and to identify the successful 
completion of the action.  The level at which an action is identified depends on the 
context in which the action is performed, the difficulty of the action, and the performer’s 
experience with the action.  For example, using a robotic manipulator to guide a coffee 
cup would likely force a shift in how the action of drinking coffee would be identified.  
The second principle is that people tend to adopt a higher level of identification when 
both higher and lower identities are available.  The reason for this is that people tend to 
be sensitive to the larger meanings, effects, and the broader context of their actions.  
High-level identification lends itself to action stability, in which the person is less likely to 
engage in other tasks at the same level. The third principle concerns situations in which 
an action cannot be maintained in terms of its prepotent identity.  In these situations 
there is a tendency for a lower-level identity to become prepotent.  This occurs in driving 
when unexpected events disrupt the ongoing driving activity.  For example, poor 
weather can shift drivers from “going to the store” to “carefully slowing for a stop sign.”  
IVIS tasks are subject to the same hierarchical classification.  Difficulty entering an 
address in a navigation system may cause the driver to think of the task as “looking for 
the enter button” whereas before the prepotent action description was “getting directions 
to Aunt Ida’s house.”  The principles of the Action Identification Theory describe 
qualitative shifts in how the driver views tasks and so may greatly influence how the 
driver switches between them. 

As mentioned in the theory, higher-level descriptions are composed of lower-level 
descriptions.  Goals and tasks are also ordered in a hierarchical manor.  For example 
the task and goal of reading a book can be described and carried out on the levels of 
words, phrases, sentences, paragraphs, sections, and chapters.  If the reader is 
interrupted, resumption of the reading task will be less effortful if the interruption 
occurred at the end of a paragraph rather than mid-sentence.  Depending on what kind 
of environmental information triggered the interruption and the urgency of this cue, the 
reader may be able to postpone addressing the interruption until he or she has reached 
a more suitable place in the text.   

Consistent with the Action Identification Theory, driving activities can be divided into the 
hierarchical categories of control, maneuvering, and navigation (Michon 1993).  Control 
activities are required to complete maneuvering and maneuvering activities are 
components of navigation.  These categories are sometimes called the operational, 
tactical, and strategic levels (Koppinen 2000), respectively.  Like driving tasks, in-
vehicle interactions can also be considered at the control, tactical and strategic levels.  
Control subtasks of driving, for example, speed control and lateral steering, focus on 
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keeping the vehicle on the appropriate location on the road.  Tactical subtasks center on 
anticipating roadway conditions and consider the vehicle’s position in relation to other 
vehicles and objects and near the roadway.  Some examples of this type of subtask 
include lane choice and selection of appropriate headway.  Finally, strategic subtasks of 
driving involve traveling from one’s starting point to the appropriate destination and 
include route planning and route revision.   

These categorizations of driving task are performed with different levels of cognitive 
control.  Rasmussen’s SRK model of skill-, rule-, and knowledge-based processing 
distinctions have been used to describe human performance in a range of domains 
(Rasmussen 1983).  Skill-based processing occurs when the user is very experienced 
at performing the task and response occurs automatically at a subconscious level.  If 
the user is familiar with the task but does not have extensive experience, cognitive 
control occurs at the rule-based level of processing.  Knowledge-based processing 
happens when the user is a novice and has not formulated any rules based on task 
experience.  When applied to the driving domain, new drivers perform at the knowledge-
based level on all three types of driving activities.  As drivers gain driving experience, 
the control tasks in particular become more automatic and migrate to control at the skill-
based level.  Maneuvering or tactical driving activities, such as passing, merging, and 
lane selection, which are not completely automated, probably tend to be performed at 
the rule-based level of processing.  Navigation tasks are less likely to be automatic and 
so are often completed at the knowledge- or rule-based level. 

Since various driving tasks tend to be performed at varying levels of cognitive control, it 
is likely that the distraction caused by in-vehicle devices will not affect all driving tasks 
equally.  In-vehicle system tasks may affect driving performance at the control level, 
especially if the system requires vision or manual resources.  In-vehicle systems can 
also affect the tactical level of operation because cognitive resources required for 
tactical decision making now have to be shared with the system (Koppinen 2000).  
While some evidence in support of this hypothesis has been found—the GIDS project 
found that tasks at a high level of driving tend to load more on central resources 
(Hoedemaeker, de Ridder et al. 2002)—there is a lack of research that addresses the 
relationship between the attentional demands and different types of driving tasks.  
Identifying how the types of tasks performed with in-vehicle telematic devices affect 
driving performance for the different cognitive levels of processing will be crucial to our 
objective of detecting and mitigating driver distraction.   

In addition to monitoring and interpreting information from the environment and 
switching between tasks, strategic task management also consists of maintaining a list 
of tasks to be done in a queue and reprioritizing these tasks as needed.  According to a 
study by Moray, Dessouky et al. (1991), in order to successfully manage a queue of 
tasks, the operator needs to understand the temporal constraints of each task.  
Research by Woods (1982; cited in Adams, Tenney et al. 1991) revealed four biases 
that people make when scheduling tasks.  In addition to being reluctant to interrupt 
tasks as mentioned previously, people tended to switch from area to area in a routine 
order instead of in the most efficient order; delegate tasks to automation in order to 
reduce the number of areas that they needed to deal with, even though it would have 
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been beneficial for the participants to complete the tasks themselves; and disregard the 
principle of “time is money.” The tasks used in many dual task experiments are "empty" 
tasks, whereas the tasks that people perform in real multi-task situations require 
"thoughtful behavior" to complete successfully and impose real consequences if this 
goal is not met (Adams, Tenney et al. 1991).  Thus, the workload experienced in 
managing multiple tasks in actual situations can be assumed to be much higher than in 
experimental settings.  

Some important findings from the literature regarding strategic task management 
include:  

• Responses take longer and are less accurate following a switch to a new task 
• Advanced knowledge of an upcoming switch reduces (but does not eliminate) the 

cost of switching 
• Task performance recovers quickly after a switch, but there is a long-term 

performance decrement compared to single-task performance 
• Exogenous factors (characteristics of the tasks and their context) interact with 

endogenous factors (goals and deliberate intentions) to govern how tasks are 
identified and how people switch between them.  

• The task identity can range from a high-level description to a detailed description 
and this identity guides performance criteria 

• People tend to adopt high-level descriptions of tasks when possible 
• Breakdowns in task performance lead people to adopt lower-level descriptions 
• A hierarchical description of tasks may help identify natural points at which the 

task can be most easily interrupted. 
• Adopting task descriptions on different levels may lead to changes in the level of 

cognitive control (i.e., skill-, rule-, or knowledge-level) required to perform a task 
• Research has shown that people are susceptible to biases which make them 

non-optimal task schedulers. 
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5.6 INTEGRATED MODEL OF DISTRACTION 
 
Figure 5.8 shows a preliminary conceptual model that integrates many of the theoretical 
considerations regarding driver distraction.  The model distinguishes between two 
distinct levels of behavior associated with distraction.  Tactical behavior describes 
driving and IVIS tasks at a relatively molar level, with a time scale of 5-60 seconds.  In 
contrast, the control behavior describes these tasks at a relatively micro level, with a 
time scale of 0.5-5 seconds.  Each of these levels has qualitatively different 
performance metrics, effects on driving, and opportunities to mitigate distraction.  At the 
same time, both levels share similarities regarding the closed loop nature of the 
interactions, the fact that roadway and IVIS dynamics are critical determinants of the 
demand, and the fact that performance depends on the joint demands of the roadway 
and IVIS, which can be combined using a conflict matrix.   
 
Figure 5.8 shows that six links connect the tactical and control behaviors.  The tactical 
level influences the control level by partially determining roadway and IVIS demand.  
Roadway demand is determined by speed and headway selections and IVIS demand is 
partially determined by the decision to engage in IVIS activities.  Tactical behavior also 
determines the effort invested and how that effort is allocated between driving and IVIS 
interactions.  Control behavior also influences the tactical behavior.  Violations of  safety 
margins and breakdowns in IVIS interactions may lead to changes in tactical behavior 
that affect IVIS and roadway demand, as well as effort investment and resource 
allocation. 
 
Common to both tactical and control behavior is assumption that IVIS and roadway 
demands can be represented by a vector and that the performance can be estimated by 
assessing the joint demands using a conflict matrix.  For control behavior, this approach 
is not new and vectors defined by the MRT dimensions of modes, codes, and stages 
predict performance decrements (Wickens 2002).  For tactical behavior this approach 
has not been used; however, potential dimensions to describe task demands at this 
level include: task duration, complexity, divisibility (chunkability), predictability, and locus 
of control.  Identifying these dimensions and how they interact to govern tactical IVIS 
and driving performance is an important research issue.  
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Figure 5.8.  Integrated model of distraction, showing the interaction of behavior at the 

tactical and control levels on driving and IVIS performance. 
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5.7 MEASURES OF DISTRACTION 
Driver distraction is a complex phenomenon that cannot be predicted from a single 
variable.  Instead, predicting driving-related performance decrements requires multiple 
convergent measures.  For predicting cognitive distraction, three main categories of 
measures have been adopted:  physiological, performance, and task demands.  The 
following sections describe criteria for selection measures, representative measures 
from each category, and considerations for how they might be integrated into a precise 
estimate of distraction. 

5.7.1 Considerations for selecting measures of distraction 

A wide range of measures have been used to assess workload and distraction.  Many 
years of research in the area of mental workload provide a useful basis for selecting 
measures that might be sensitive to high levels of effort—an important element of 
distraction.  The goal of real-time measurement of cognitive distraction with technology 
that could be incorporated into production vehicles places severe constraints on the 
potential measures.  Specifically, the following four criteria reflect these constraints:  

• Timely—the measures must change quickly enough such that any change in 
measured distraction can be used to preserve driver safety.  In other words, the 
time constant of the measure must be similar to the time constant of the adaptive 
system and driving situation.   

• Diagnostic—the measures must differentiate between different types of 
distraction, such as attentional withdrawal, underload, and overload.  Ideally, 
measures would even indicate the type of demands facing the driver, such as 
those defined by MRT. 

• Sensitive—the measures must change when the level of distraction changes and 
should not change in response to irrelevant changes, such as ambient 
temperature. 

• Practical—the sensor and data reduction requirements must be feasible in terms 
of cost and intrusion on the driver.  Drivers are unlikely to pay thousands of 
dollars for a system that requires them to attach a series of electronic leads to 
their body each time they drive.   

Possible physiological, driver performance, and task demand measures are described 
according to these criteria and then summarized in Table 5.2 at the end of this section. 

 
5.7.2 Physiological measures of distraction 

No one physiological measure can tell the complete story of workload demands and 
effort.  For example, Hankins and Wilson (1998) used multiple measures in order to 
“provide a comprehensive picture of the mental demands of flight.”  They conclude that 
the “continuous nature of the psychophysiological data may make it possible to develop 
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systems which provide on-line monitoring of mental workload.”  Physiological measures 
can be classified into two categories.  Measures of emotional and physical activation 
include measures such as heart rate and pupil size (Hart and Wickens 1990) and are 
related to general arousal (Gopher and Donchin 1986).  Measures such as event 
related potentials and eye movements reflect mental and perceptual processing (Hart 
and Wickens 1990) and reflect multiple resource theories (Gopher and Donchin 1986).  
The first set of measures may be helpful for detecting instances of driver distraction due 
to underload or attentional withdrawal while the second set is ideal for determining when 
drivers are overloaded.  de Waard (1996) reviews a number of physiological measures 
that are candidates to measure driver mental workload in his thesis.  Physiological 
measures are objective and cannot be affected by devoting extra effort to a task as 
performance measures can.  Wilson found several different kinds of physiological 
measures, such as heart rate, heart rate variability, eye blinks, electrodermal activity 
and brain wave activity to be consistent both between and within pilots who flew the 
same course on different days.   

5.7.2.1 Eye movements and scan patterns 

Eye movement data often contain information about saccades, fixations, glances, and 
scan patterns.  Numerous studies have investigated the effect of workload on these eye 
movements.  The results of such studies are consistent in that they show that eye 
movements are affected across a variety of tasks and workloads, providing promising 
evidence that eye movement data could provide reliable indications of driver workload.  
For example, Recarte and Nunes (2000) investigated eye movements made while 
concurrently driving and performing a secondary task.  The secondary tasks consisted 
of verbal and spatial-imagery tasks.  Both types of tasks significantly shrank the area of 
the driving scene that the drivers scanned, and the spatial task resulted in a significantly 
smaller scanned area than the verbal task.  These results can be seen in Figure 5.9.  
Participants also drove faster and checked their mirrors and speedometer less often 
while performing the secondary tasks as compared to driving alone.  These results 
suggest that increased mental workload led drivers to shed the tasks of mirror and 
instrument scanning.  Such shedding may have implications for the driver’s awareness 
of the driving environment and event or change detections.   

The tunnel vision-like effect seen during cognitive processing has been researched in 
both basic and applied settings.  Experimental psychology experiments, such as those 
of Rantanen and Goldberg (1999) who found that cognitive load associated with a 
counting task influenced the size of the visual field.  Under a medium workload, the 
visual field shrunk, on average, 7.8% and under a heavy workload, almost 13.6%.  May, 
Kennedy et al. (1990) found similar results when they induced workload through a tone 
counting task.  As the complexity of the counting task increased, the length of the 
saccades decreased significantly.   
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Figure 5.9. Visual inspection windows with no task (white), with verbal task (light gray), 
and with imagery task (dark gray).  H1, H2, R1, and R2 represent the four different 

roadway conditions (Recarte and Nunes, 2000). 
 

Williams has performed a series of experiments (1982; 1988; 1995) with the goal of 
answering the question whether the changes in the visual field which occur with 
increased workload are a true tunnel-vision effect or are more of a generalized nature.  
If true tunnel-vision occurs, a higher cognitive load will not only have a greater 
impairment on performance, but this impairment will grow worse as the stimuli are 
located more eccentrically.  Williams (1982) found increased reaction time with higher 
cognitive load but that this increase was not affected by the eccentricity of the peripheral 
stimuli.  Even though there was a "slight tendency" towards tunnel-vision, overall the 
data supported the theory of generalized shrinkage of the visual field under increased 
workload.  In a subsequent experiment (Williams 1988), some subjects were instructed 
to perform the central task as the primary task and to attend seriously to it, while other 
subjects were instructed to perform both tasks as fast and as accurately as possible.  
The high cognitive load group which received the central bias instructions showed a 
tunnel-vision effect, while the other three groups did not. 

The findings of an applied study by Sodhi, Reimer, and Llamazares (2002) are 
complimentary to those of Recarte and Nunes (2000).  Sodhi, et al. asked participants 
complete a number of tasks while driving, including a computation task and a memory 
task.  Analysis of the eye movement data showed a “pronounced” reduction in eye 
movements for these cognitive tasks in comparison to “glance” tasks that required the 
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driver to look away from the roadway.  The author’s also noted, “The driver’s eyes 
‘wander’ around the center of the forward view.”  The results also indicated that this 
reduction in eye movements did not end when the task ended, confirming the findings of 
Redelmeier and Tibshirani (1997). 

Other studies have revealed that driver experience seems to affect scanning behavior 
as measured by fixation length.  For example, Crundall and Underwood (1998) found 
that while experienced drivers increased the length of their fixations on the least 
demanding roadway, inexperienced drivers increased fixation duration on a more 
demanding roadway.  One explanation the authors present for the findings is that 
experienced drivers may reduce fixation duration in order to compensate for the 
additional demand of driving in a more complex environment.  Novice drivers may not 
have developed this strategy.  Another study involving experienced and inexperienced 
drivers (Unema and Rotting 1988) found decreased fixation duration with increased 
situation complexity.  However, the more experienced the driver, “fixations of extreme 
short duration occur less.”  In addition, the data suggest that “there exists a link between 
the control of fixations of extreme short durations and the energetic state of the subject.” 

5.7.2.2 Endogenous eye blinks  

Endogenous eye blinks, unlike eye blinks provoked by events in the visual scene or 
loud noises, occur without an identifiable eliciting stimulus and may be a useful measure 
of cognitive load.  Eye blinks are described in terms of rate, duration, and latency.  Eye 
blink rate, which is the blink characteristic that has been studied the most (Kramer 
1991), has been shown to increase with fatigue, and higher task demand leads to 
decreases in duration.  These eye blinks can be measured through video analysis, 
corneal reflection, or with an electrooculogram (EOG), which is more accurate than 
video when measuring duration (Wilson and Eggemeier 1991; cited in de Waard 1996).  
However, EOG requires the placement of skin electrodes near the eye and corneal 
reflection requires the subject to remain still (Kramer 1991) so all three methods are 
less than ideal for practical application in vehicles.  While a recent study found that blink 
rate closely paralleled changes in roadway curvature—as the radius of curvature 
decreased, the blink rate increased (Richter, Wagner et al. 1998)—other studies on eye 
blink rate have produced conflicting results and so more research is needed (Kramer 
1991).  While both blink latency and duration are sensitive to information processing 
and workload, they are sensitive in a global rather than specific manner (Kramer 1991).  
In addition, other factors, such as air quality (de Waard 1996) and fatigue (Kramer 
1991) can affect blink behavior.   

5.7.2.3 Pupil dilation  

Kahneman (1973), who proposed pupil diameter as a measure of mental workload, 
found that increased processing demands and resource investment led to increases in 
pupil diameter.  Beatty (1982) also found that pupil diameter accurately reflects 
cognitive load.  Pupillary response has been found to be “related to information-
processing” (Backs and Walrath 1992; cited in de Waard 1996), mental processing load 
(Hoeks 1995; and Hyona, Tommola et al. 1995; cited in de Waard 1996), and fatigue 

 5-42



(Murata 1997; Morad, Lemberg et al. 2000).  However, Kramer (1991) does not 
consider pupil diameter to be very diagnostic since it has shown sensitivity to a wide 
range of processing demands.  Pupil diameter is also sensitive to factors unrelated to 
task demand, such as changes in the ambient light levels, emotional state, and pupil 
constriction in order to focus on a distant target.   

5.7.2.4 Cardiac measures  

The electrocardiogram data can be analyzed in the time domain or with frequency 
analysis.  Time domain measures include heart rate, inter-beat-interval, and heart 
period.  Roscoe (1992; cited in de Waard 1996) found that in the absence of physical 
effort, heart rate was affected most by workload.  Veltman and Gaillard (1998) found 
heart period to be sensitive to differences in task demand for pilots performing a 
simulated tunnel navigation task.  In addition to physical effort, heart rate is also 
affected by emotion, speech production, sedative drugs, and fatigue (de Waard 1996).   

Frequency analysis of cardiac data involves dividing heart rate variability into various 
frequency bands.  The low frequency band consists of 0.02-0.06 Hz and has been 
linked to the regulation of body temperature.  The mid-range consists of 0.07-0.14 Hz 
and is related to short-term blood pressure regulation.  The high band (0.15-0.50 Hz) 
reflects respiratory fluctuation.  The mid- and high bands range, also called the 0.10 Hz 
component, reflect changes in mental effort (de Waard 1996).  Wilson (2002) found that 
heart rate variability was less sensitive to task demands on pilots than heart rate.  
Veltman and Gaillard (1998) found that only large changes in task difficulty were 
reflected in heart rate variability measures.  Althaus and Mulder (1998) found that the 
frequency band which best reflected changes in task load depended on each 
participant’s breathing pattern.  Researchers have found a range of heart rate measures 
to be sensitive to various types of task load, but the decrease in 0.1 Hz variability has 
been shown to be particularly sensitive and diagnostic to cognitive effort (Mulder 1992).   

The brainstem plays an important role in regulating behavior and physiological reactivity 
to stress.  Comprised of parasympathetic (growth and restoration) and sympathetic 
(increased metabolic output to deal with challenges external to the body) nervous 
systems, the autonomic nervous system regulates internal environment of body to 
maintain homeostasis.  The two systems work in tandem and usually in opposite 
directions.  Autonomic responses to external stimuli (say pain or attention) produce a 
decrease in parasympathetic tone.  Such withdrawal in response to a challenge may 
define stress.  One physiological measure that can be used to diagnose such a 
decrease in the parasympathetic tone is the vagal tone.  Vagal tone is derived from 
heart rate pattern detected by electrocardiogram and the period between heart beats 
must be timed with millisecond accuracy.  Then this data is processed with a patented 
method which includes the application of time domain filters (Porges 1995).  Vagal tone 
reflects stress, which can be a result of high mental workload or other factors such as 
the driver’s emotional state.   

In addition to the challenge of gaining access to the heart beat rhythm through 
electrodes of some sort, some common diseases such as hypertension or diabetes are 
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characterized by a depression of parasympathetic tone (Porges 1995) that would make 
changes difficult or impossible to detect.  Also unknown is the amount of stress or 
excitation required to illicit a detectable response.  

5.7.2.5 Respiration  

Respiration rate has been shown to increase under stressful attention conditions, 
increased memory load, and increased temporal demands (Backs and Ryan 1992; 
Porges and Byrne 1992; and Backs and Seljos 1994; cited in de Waard 1996).  Other 
studies have shown that increased cognitive activity results in decreased respiration 
rate.  Another respiration measure is tidal volume.  When respiration rate is multiplied 
by tidal volume, the result is minute ventilation or the quantity of air breathed per 
minute.  A major challenge in using respiration to estimate workload is how to measure 
it.  All accurate methods (e.g., flow meters) are highly intrusive and sometimes require 
calibration, while less intrusive measures (e.g., strain gauges) are also less accurate.  In 
addition to measurement difficulties, respiration is obviously not uniquely sensitive to 
mental effort, as physical effort, speech production, and emotion also have significant 
effect on respiration.  Decreases in respiration rate coincide with increases in cognitive 
activity (de Waard 1996). 
 
5.7.2.6 Blood Pressure 

Blood pressure variability is “closely related” to heart rate variability (de Waard 1996) 
and has been shown to reflect mental load (vanRoon, Mulder et al. 1995).  In order to 
capture blood pressure variability, measurements must be made continuously, usually 
through the use of finger cuff (de Waard 1996).  However, this technique may be 
somewhat intrusive and impractical for a production vehicle. 

5.7.2.7 Electrodermal activity 

The electrical changes that occur in the skin are called electrodermal activity (EDA) and 
are most commonly measured using an external source of a small electrical current.  
The measurements are usually made on the palm of the hand or sole of the foot.  The 
average or baseline level of EDA is called the tonic EDA, and the phasic or time-varying 
EDA measures include the electrodermal response (EDR) which is similar to galvanic 
skin response and expressed as Skin Conduction Response (SCR).  EDR measures 
have a slow response with a latency of over one second and electrodermal activity 
measures are globally sensitive to any behavior that affects the sympathetic nervous 
system.  Ambient temperature and humidity can also affect these measures making 
them somewhat impractical in a production vehicle (de Waard 1996). 

5.7.2.8 Electroencephalogram 

An electroencephalogram (EEG) measures electrical activity by placing electrodes on 
the scalp.  EEG signals are classified into four different bands: delta (up to 4 Hz), theta 
(4-8 Hz), alpha (8-13 Hz) and beta (>13 Hz).  The use of EEG as a measurement of 
mental workload research is rare (de Waard 1996).  In the few studies that have been 
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completed, activity in the alpha band decreased and activity in the theta band increased 
during dual-task performance as compared to single-task performance (Sirevaag, 
Kramer et al. 1988; cited in de Waard 1996).  EEG is more commonly used to assess 
arousal in studies of operator vigilance (de Waard 1996) and for this reason might be 
useful in determining when a driver has withdrawn attention or is underloaded.  
However, the instrumentation requirements are intense and are incompatible with the 
driving environment. 

5.7.2.9 Event Related Potential  

Event related potential refers to time-based changes in electrical activity of the brain in 
response to particular events, rather than the global activity reflected in the EEG 
measures.  The most common ERP measure is the P300, which refers to a change in 
“amplitude and latency of positive potentials that occur minimally 300 ms after stimulus 
presentation” (de Waard 1996).  Unexpected stimuli that are task-relevant cause 
increases in P300 amplitude and there is evidence that P300 latency reflects the cognitive-
evaluation time associated with the information processing requirements of a task and 
increases with task complexity (Kramer, Trejo et al. 1995; Garcia-Larrea, Perchet et al. 
2001).  Gopher and Donchin (1986; cited in de Waard 1996) found the P300 to reflect the 
perceptual/central processing load before performance declines.   When both a primary 
and a secondary task are being performed concurrently, the P300 amplitude decreases 
as primary task difficulty or priority increases (Kramer 1991).  In the irrelevant probe 
method, which eliminates the need for a secondary task, the participant hears irrelevant 
tones that s/he is instructed to ignore.  If task load is low, the participant has spare 
capacity to process the irrelevant stimuli.  As task difficulty increases, ERP amplitude 
decreases.  However, this method assumes that the spare capacity will be allotted to 
the processing of the irrelevant stimuli and not to some other cognitive task (Kramer 
1991).  All ERP techniques are affected by signal noise and intra-individual variability 
(de Waard 1996).  Like EEG measures, the instrumentation requirements are intense 
and incompatible with the driving environment.  

5.7.2.10 Hormone levels 

Certain hormones such as adrenaline, noradrenaline, and especially cortisol are 
indicators of stress.  Analysis of hormone levels can separately identify physical and 
mental workload.  However, urine, blood, or saliva sampling is required for and the 
result reflects accumulated stress levels (de Waard 1996).  Therefore, it is quite difficult 
to relate changes in hormone levels to distractions in a way that could guide an adaptive 
system.  The timeliness and practicality of these measures is a problem for 
implementation in a production vehicle.  

5.7.2.11 Electromyogram 

The measurement of the electrical activity in the facial muscles is called 
electromyography or EMG.  The tonic activity of the lateral frontalis muscle, the 
corrugator supercilii, and the orbicularis oris inferior reflect mental effort and the use of 
general resources while the orbicularis oculi, zygomaticus major, and temporalis 
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muscles are less or not sensitive to mental effort (de Waard 1996).  “Activity of the 
orbicularis oculi and zygomaticus major ‘may be representative of situation where 
suboptimal performance can no longer be compensated for by the mobilization of 
additional resources” (Van Boxtel and Jessurun 1993; cited in de Waard 1996).  
Electromyograms can be contaminated by emotion and might also be confounded with 
speech activity.  In addition, collecting these data requires the application of electrical 
leads on the driver’s face and is not practical to implement in vehicles; however, 
sophisticated image processing might be able to extract some of the same information 
less intrusively. 

5.7.3 Driving performance 

There are a variety of driver performance measurements and some may be useful 
indicators of distraction.  A review of driver performance measures includes the 
following as major categories (Wierwille, Tijerina et al. 1996): 
 

• Lateral control measures, including lane-related measures, steering-related 
measures, heading and lateral-acceleration measures 

• Longitudinal control measures, including accelerator-related measures, 
brake/deceleration-related measures, speed-related measures, and vehicle 
following-related measures 

• Obstacle and event detection, including probability of detection measures and 
detection latency measures 

• Driver response measures to presented stimuli  
• Vision-related measures, including allocation to roadway and to in-vehicle 

controls and displays 
• Manual-related measures, including hands-on wheel frequency, duration, and 

total time.   
 
A benefit of most driver performance measures is that they are easily measured and are 
not intrusive.  Unfortunately, speed and lane position control may not be sensitive to low 
levels of distraction.  Headway maintenance, especially driver reaction time to lead 
vehicle deceleration, is more sensitive to cognitive distraction.  The major drawback of 
driver performance measures is that they are lagging indicators of distraction and reflect 
the negative results of distraction.  On the other hand, driver performance measures 
have been shown to be indicative of the specific ways in which distraction affects driver 
performance.  Young and Angell (2003) demonstrated that driver performance 
measures could be combined using Principle Component Analysis.  Three principle 
components accounted for 83% of the variability in the fifteen driver performance 
measures.  Based on the composition of these three principle components in terms of 
the performance variables, the components were interpreted as “overall driver demand,” 
“low-workload-but-high-inattentiveness,” and “peripheral insensitivity.”  These results 
suggest that the effects of distraction are more complicated than what can be captured 
in a single measure such as brake reaction time.    
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5.7.4 IVIS interaction 

The driver’s interaction with the IVIS might provide a useful basis to estimate distraction.  
Knowing what IVIS functions have been engaged and when the driver is pressing 
buttons or issuing commands could be a very precise and timely estimate of distraction.  
The primary challenge is to relate the IVIS state and the history of IVIS state transitions 
to the level of driver distraction.  For example, knowing the cellular phone is on does not 
indicate how engaging the conversation is.  Because a one-to-one mapping between 
IVIS state and driver distraction does not exist, some form of model or lookup table is 
needed to estimate distraction.  One promising approach is the multiple resource model 
discussed earlier.  This approach can describe driving demand and IVIS task demands 
in terms of a vector of resource requirements.  The conflict in these resource 
requirements represents the performance decrement that can be expected in the driving 
and IVIS tasks.  Similarly, the ACT-R model has been successfully applied to estimate 
cognitive distraction (Salvucci 2002).  The ACT-R approach decomposes the IVIS 
interaction into a series of production rules and elemental cognitive tasks.  Another 
approach, the OFM-COG framework, uses a set of high-level task descriptions to 
identify the information processing resources they demand.  This approach has been 
used to define IVIS functions (Lee, Kantowitz et al. 1994; Lee, Morgan et al. 1997) and 
to estimate their cognitive demands (Hankey, Dingus et al. 2000).  This description may 
be particularly useful in addressing the factors affecting the decision to engage in in-
vehicle task and the tendency for some in-vehicle tasks to preempt driving tasks.  Table 
5.1 shows sets of terms that describe generic cognitive tasks that in turn can be used to 
describe a range of IVIS interactions.  These task descriptions might provide a useful 
method of describing IVIS demands at the tactical level.  High levels of IVIS demand 
would be characterized by interactions that demand multiple cognitive tasks shown in 
Table 5.1.  The right column of Table 5.1 shows the information processing resources 
demanded by each cognitive task and so may be a rough index of individual task 
demand. 

Table 5.1. Tasks from the OFM-COG framework for estimating cognitive demands of 
human-system interactions (Lee and Sanquist 2000). 

Cognitive Task General Category of 
Information Processing 

Information 
Processing 
Resources 

1. Input select.  Selecting what to pay 
attention to next. 

Acquisition Selective attention, 
Perceptual sensitivity 

2. Filter.  Straining out what does not 
matter. 

Acquisition Selective attention 

3. Detect.  Is something there? Acquisition Perceptual 
sensitivity, 
Distributed attention 

4. Search.  Looking for something. Acquisition Sustained attention, 
Perceptual sensitivity 
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Cognitive Task General Category of 
Information Processing 

Information 
Processing 
Resources 

5. Identify.  What is it and what is its 
name? 

Acquisition/Interpret Perceptual 
discrimination, Long-
term memory,  
Working memory 

6. Message.  A collection of symbols sent 
as a meaningful statement. 

Handling Response precision 

7. Queue to channel.  Lining up to process 
in the future. 

Handling Working memory, 
Processing 
strategies 

8. Code.  Translating the same thing from 
one form to another. 

Handling Response precision,  
Working memory,  
Long-term memory 

9. Transmit.  Moving something from one 
place to another. 

Handling Response precision 

10. Store.  Keeping something intact for 
future use. 

Handling Working memory,  
Long-term memory 

11. Store in Buffer.  Holding something 
temporarily. 

Handling Working memory,  
Processing 
strategies 

12. Compute.  Figuring out a logical or 
mathematical answer to a defined 
problem. 

Handling Processing 
strategies,  
Working memory 

13. Edit.  Arranging or correcting things 
according to rules. 

Handling Long-term memory,  
Selective attention 

14. Display.  Showing something that makes 
sense. 

Handling Response precision 

15. Purge.  Getting rid of the irrelevant data. Handling Selective attention 
16. Reset.  Getting ready for some different 

action. 
Handling Selective attention,  

Response precision 
17. Count.  Keeping track of how many. Handling/Interpretation Sustained attention,  

Working memory 
18. Control.  Changing an action according 

to plan. 
Handling/Interpretation Response precision 

19. Decide/Select.  Choosing a response to 
fit the situation. 

Interpret Long-term memory,  
Processing strategy 

20. Plan.  Matching resources in time to 
expectations. 

Interpret Working memory,  
Processing strategy 

21. Test.  Is it what is should be? Interpret Perceptual 
sensitivity, Working 
memory, 
Long-term memory 

22. Interpret.  What does it mean? Interpretation Long-term memory,  
Sustained attention 
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Cognitive Task General Category of 
Information Processing 

Information 
Processing 
Resources 

23. Categorize.  Defining and naming a 
group of things. 

Interpretation Long-term memory,  
Perceptual sensitivity 

24. Adapt/Learn.  Making and remembering 
new responses to a learned situation. 

Interpretation Long-term memory 

25. Goal image.  A picture of a task well 
done. 

Interpretation Long-term memory, 
Processing 
strategies 

 

Blanco (1999) described tasks using a scheme similar to that in Table 5.1.  In her study, 
participants performed normal driving in an instrumented vehicle while performing 
various tasks with both visual and auditory IVIS displays.  The visual tasks were 
characterized as (1) search, (2) search-compute, (3) search-plan, (4) search-plan-
compute, (5) search-plan-interpret, and (6) search-plan-interpret-compute.  The IVIS 
displays varied in presentation format and number of decision alternatives.  The 
auditory tasks, which had two levels of density, were categorized as (1) listen, (2) listen-
plan, (3) listen-compute, and (4) listen-plan-compute.  Five conventional in-vehicle tasks 
(activate turn signal, adjust mirror, etc.) were also completed.  The participants were 
allowed to skip a task if they felt they could not complete it safely.  In addition, the ride-
along experimenter was allowed to skip tasks if the participant had skipped or had 
difficultly performing a less complicated task.  The results showed that tasks involving 
decision making components, both visual and auditory, were much more likely to be 
skipped, led to more “erratic” driving, and required more eyes-off-road time.   

Using the history of IVIS interactions to estimate distraction is quite promising, but 
several challenges confront this approach.  First, these models are limited regarding 
how they account for task scheduling and strategic task management.  This makes any 
extrapolation regarding what a driver is doing with information extracted during the last 
IVIS interaction problematic.  In addition, these models assume a driver engages in a 
specific well-defined strategy in performing a task.  For example, MRT might assume 
that interpreting navigation information loads heavily on spatial resources; however, 
some drivers might adopt a strategy that involves primarily verbal resources.  
Differences in the choice of a strategy between and within individuals over time might 
be substantial.  Finally, practical application of these models assumes that the cognitive 
demand associated with IVIS interactions can be efficiently and reliably linked to the 
IVIS state information. Using IVIS state information to estimate IVIS demands requires 
substantial expert judgment and makes it impossible to create a standard that third 
party developers could use to describe IVIS interactions.  Although using the history of 
IVIS interaction to predict cognitive load has important limits it is uniquely suited to 
provide predictive information regarding future levels of driver distraction.   
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5.7.5 Measure interactions 

Table 5.2 shows that no one method perfectly satisfies all the criteria for estimating 
cognitive distraction.  Each measure has a different profile of strengths and 
weaknesses.  Of the physiological measures, the most promising alternatives include: 
eye movements, eye blinks, and the 0.1 Hz measure of heart rate variability.  Eye blink 
and pupil dilation are particularly problematic with respect to sensitivity.  Many factors 
unrelated to workload affect these measures; however, the same hardware used to 
collect eye movement might also be used to collect eye blink and pupil dilation data.  
The most promising driver performance measures are those associated with lane 
keeping and headway maintenance.  Of the cognitive models, the MRT and OFM-COG 
provide complementary descriptions of cognitive demand.  Using all of these measures 
to estimate driver distraction has the benefit that the limits of one are compensated by 
another.  Another benefit is that the interactions between them may lead to new insights 
regarding distraction.  For example, eye movements are systematically related to lane 
position control (Land and Lee 1994) and lane change behavior (Hildreth, Beusmans et 
al. 2000).  Breakdowns in these relationships may be more sensitive to distraction than 
an univariate analysis of either steering behavior or eye movement.  Similarly, 
physiological and driver performance variables could be used to disambiguate and tune 
the models for estimating driver distraction as a function of IVIS interactions.  
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Table 5.2.  Summary of potential measures to estimate cognitive distraction, with the 
most promising highlighted in bold. 

Measure Timely Diagnostic Sensitive Practical 
Eye movements and scan patterns ● ● ● � 
Endogenous eye blinks ● � ○ � 
Pupil dilation ● ○ ○ � 
Cardiac measure—0.1 Hz variability � ● ● � 
Cardiac measure—Vagal tone � � � ○ 
Respiration rate ● � ○ ○ 
Blood pressure � ● ● ○ 
Electrodermal activity  ○ � ○ ○ 
Electroencelphalogram (EEG) ● ● ● ○ 
Event related potential (ERP) ● ● ● ○ 
Hormone levels ○ � ○ ○ 
Facial electromyography (EMG) ● � � ○ 
     
Driving performance—Lane position � � � � 
Driving performance—Speed control � ○ � ● 
Driving performance—Headway maintenance � � ● ● 
     
IVIS interactions—MRT-based estimation ● � � � 
IVIS interactions—ACT_R-based estimation ● � � � 
IVIS interactions—OFM-COG-based estimation ● � � � 

●  = Very appropriate 
� = Somewhat appropriate 
○ = Inappropriate 
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5.8 ALGORITHMS FOR PREDICTING DISTRACTION 
The overall objective of this project is to combine the various measures of distraction to 
predict increased reaction time to unexpected roadway events.  The most common and 
simple way to achieve this goal is to construct a linear model using linear regression 
techniques.  This approach has been shown to be robust in many decision making 
situations (Dawes and Corrigan 1974); however, such an approach may not extract as 
much information as other techniques.  Specifically, Hidden Markov Models and 
Support Vector Machines provide qualitatively different approaches to data reduction 
and prediction and do not depend on the same assumptions of linear regression.   

 

5.8.1 Hidden Markov models 

Hidden Markov Models (HMMs), proposed by Baum and his colleagues (Baum and 
Petrie 1966; Baum and Egon 1967; Baum and Sell 1968; Baum, Petrie et al. 1970; 
Baum 1972), represent stochastic sequences as Markov chains where the states are 
not directly observed but are associated with a probability density function (Rabiner and 
Juang 1986).  HMMs are a doubly stochastic process with an underlying stochastic 
process that is not directly observed. However, the underlying stochastic process can 
be exposed through another set of stochastic processes that produce the sequence of 
observed symbols (Rabiner and Juang 1986; Rabiner 1989).  These models help to 
both characterize and explain data output sequences through modeling techniques.  
HMMs were first implemented in speech recognition and processing research.  
However, recently they have been employed in other venues such as simulation 
modeling, eye movement modeling, and show promise in the current project to detect 
driver distraction.  Salvucci (1999; 2000) used HMMs to create an aid that attempts to 
increase the reliability of typing using eye fixations by implementing HMM modeling to 
more robustly determine the letters being typed.  In another study HMMs were used to 
estimate hidden task transitions made by pilots during flight simulation (Hayashi, Oman 
et al. 2003).  HMMs seem to be a promising method to detect varying levels of 
distraction while driving.  As data output is generated, the observations will be 
compared to the HMM distraction models.  The model that best fits the observation data 
will be determined, using the set of algorithms described below, and will indicate the 
level of driver distraction. 

The underlying mechanisms behind the implementation of HMMs are that there are a 
finite number of states (N) in a particular HMM.  At each iteration a new state is entered 
based on a predefined transition matrix.  The transition may either be from state to state 
or may be a transition within the same state.  Following each transition an observation 
output is produced based on the probability distribution of the current state (Rabiner and 
Juang 1986).  These observation outputs are then compared to the observation 
sequences and the HMM that best describes the observation sequences is determined. 
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Descriptions of the variables of interest include: 
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A set of three questions must be answered for the model to be used in real world 
applications (Rabiner 1989).   

• Given the observation sequence (O) and the HMM (λ), what is the probability of 
the given sequence? 
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• Given the observation sequence (O), which state sequence is optimal (Q)? 
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• Which HMM model maximizes the observed sequence of data? 
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In practice, the first question can be answered using the Forward-Backward algorithm, 
the second question can be answered using the Viterbi algorithm, and the final question 
can be answered using the Baum-Welch algorithm.  To verify the effectiveness of the 
model, observation sequences with known distraction levels will be input and the 
resulting output will be analyzed.  

There are many advantages and limitations to using HMMs.  Some of the advantages 
are that (Rabiner and Juang 1986): 
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• HMMs can be used to model both discrete and continuous outputs 
• HMMs are dynamic and can produce outputs over time 
• HMMs are efficient both in memory and run-time 
• HMMs are straight-forward in a conceptual manner 
• HMMs can be easily implemented using a Matlab toolbox 
 

Some of the disadvantages are that: 

• Varying assumptions on the form of observation density can affect the 
robustness of the model 

• It may be fairly difficult to implement HMM pattern recognition in real-time data 
acquisition 

 
HMMs have yet to be used to model driver distraction.  However, eye movement data 
such as fixation duration, saccade length, and saccade speed have been measured to 
gauge driver distraction.  In addition, HMMs have been used to analyze eye movement 
data.  As a result, using HMM analysis in combination with eye fixation data output to 
monitor driver distraction in real-time appears to be promising. 

 
5.8.2 Support Vector Machines  

Support Vector Machines (SVMs), proposed by Vapnik (1995), are based on the 
statistical learning technique and can be used as pattern classifiers.  Unlike traditional 
learning methods (e.g., neural networks), which minimize the empirical training error 
(empirical risk), SVMs and other statistical learning machines aim at minimizing the 
upper bound of the generalization error (Amari and Wu 1999), also know as the 
expected risk, which is the reason why they may give more correct results than the 
traditional methods. From an early study, SVMs demonstrated the ability to generalize 
well even in high dimensional spaces under small training sample conditions (Jonsson, 
Kittler et al. 2002) and have been shown to be superior to the traditional methods (Byun 
and Lee 2002). SVMs have been successfully applied to a number of applications 
ranging from detection, verification, and recognition of faces, objects, handwritten 
characters and digits, text, speech and speakers, and retrieval and prediction of 
information and images (Byun and Lee 2002).  SVM is reasonable to use in recognizing 
the different patterns of eye movements which indicate the status of attention distraction 
while driving. 

The Support Vector Machine algorithm contains several steps.  First the training data 
(binary-class data shown in Figure 5.10 as circles and dots) is mapped according to the 
following equation:   

( ){ } { }1,1,,, 1 +−=∈⊂∈= = YyRXxyxD i
d

i
l
iii  

into the high-dimensional feature space via )(xΦ .  Then a separating hyperplane with 
maximum margin (the straight continuous line in the feature space in Figure 5.10) is 
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constructed, which ensures the minimization of the generalization error. This yields a 
nonlinear decision boundary (the continuous curve in input space in Figure 5.10) (Byun 
and Lee 2002). 

 

 Input space Feature space 

Φ 
Optimal hyperplane 

Maximum margin 

 

 
Figure 5.10. Conceptualization of the support vector machine algorithm 

(Byun and Lee 2002). 
 

In practice, SVMs minimize the function I (Barla, Fanceschi et al. 2002; Neelanjan and 
Mukherjee 2002), called the expected risk. It is the upper bound of the generalization 
error. 
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f is the trained machine, which is trained by learning the mapping (Burges 
1998). V is a loss function measuring the fit of the function f to the training data, which is 
called “empirical risk.”  

ii yx a

K
f is the norm of f in the feature space induced by a certain 

positive kernel function K, and 0>λ  is a regularization  parameter quantifying the 
willingness to trade off accuracy of classification with the small norm in the feature 
space. For several choices of the loss function V, minimizing the function I takes the 
general form  

( )∑
=

l

i
ii xxK

1
,α , 

where the coefficients iα depend on the examples. The mathematical requirement of K 
must ensure the convexity of the function I and hence the uniqueness of the minimum 
function above.  

For SVMs for binary classification, corresponding V is like  

( )( ) ( )
+

−= iiii xfyyxfV 1, , 
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with tt =
+

 if t > 0, and 0 otherwise and leads to a convex quadratic programming 
problem with linear constraints in which many of the iα  vanish.  The points xi for which 

0≠iα  are termed support vectors and are the only examples needed to determine the 
solution (Barla, Fanceschi et al. 2002).  The function I can be seen as the sort of upper 
generalization error to measuring the validation of SVM. We also can use the test data 
to evaluate the prediction of SVM. 

Some of the benefits of SVMs are that:  

• By minimizing the upper bound of the generalization error (or the expected risk), 
SVMs initially obtain more correct results, in most cases, than traditional methods 
which minimize empirical risk.  In the study of Neelanjan and Mukherjee (2002), 
the SVM results are at least as accurate as those of neural networks and HMMs 
(Hidden Markov Models).  

• SVMs generalize well even in high dimensional spaces with small training 
datasets, 

 
Some of the limitations of SVMs, as described by Byun and Lee (2002), are: 

• The choice of kernels tends to be difficult as there are no theories concerning 
how to choose good kernel function in a data-dependent way (Amari and Wu 
1999). 

• In terms of running time, SVMs are slower than other neural networks for a 
similar generalization performance (Haykin 1999).  Training for very large 
datasets with millions of support vectors is an unsolved problem (Burges 1998).  

• The selection of support vectors is another difficult problem, particularly when the 
patterns to be classified are non-separable and the training data are noisy.  In 
general, attempts to remove known errors from the data before training or to 
remove them from the expansion after training will not give the same optimal 
hyperplane because the errors are needed for penalizing non-separability 
(Haykin 1999). 

• The use of SVM methods for multi-class SVM classifiers require exponentially 
more resources and are much more difficult to implement when compared to a 
binary classifier.  Although some research has been done, the work for multi-
class SVM is an area for future research (Burges 1998). 

 
Despite the limitations of SVMs, the benefit of a more accurate model may be 
worthwhile.  Additional research to investigate the possibility of using SVM to model 
distraction based on eye movement data and possibly other data, such as driving 
performance, merits consideration.   
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5.9 POTENTIAL EXPERIMENTS 
5.9.1 Distraction prediction  

The objective of the distraction prediction experiment is to identify an equation to predict 
decrements in reaction time and to assess whether predictors of distraction associated 
with tactical and control levels of behavior differ.  MRT and OFM-COG will be used to 
define a set of eight different IVIS tasks and drivers will perform these tasks in driving 
situations that demand different levels of control and tactical performance.  Situations 
that demand high levels of tactical performance are those in which the driver can 
anticipate the braking behavior of the lead vehicle.  Demand vectors and conflict 
matrices described in Figure 5.8 will be used to predict the differential effects of the IVIS 
tasks on tactical and control performance.  The specific independent variables include: 

• IVIS demands (Spatial/Verbal, Perceptual/Response Selection, and 
Complex/Simple response)  

• Driving control demands (response to the random braking of a lead vehicle) and 
tactical demands (response to the braking of a lead vehicle that is cued by other 
events, such as a traffic light changing from green to red) 

Specific outcomes of the experiment include:  

• The degree to which IVIS interactions, physiological, and driving performance 
measures, alone and in combination, can predict reaction time decrements 

• The extent to which distraction affecting tactical performance displays a different 
signature compared to distraction affecting control performance 

• The difference between individual and generic models in their prediction of  
distraction 

• The relative robustness, reliability, and specificity of traditional linear regression, 
Hidden Markov Models, and Support Vector Machines in predicting driver 
distraction  

 
5.9.2 Task management assessment 

The objective of the task management assessment experiment is to investigate the 
factors that influence the driver’s ability to effectively switch between driving and an in-
vehicle task.  Figure 5.8 describes the relationship between tactical decisions, such as 
the decision to engage and the characteristics of the IVIS.  This experiment will 
investigate several of these factors to identify potential distraction mitigation strategies 
that go beyond those associated with avoiding distraction related to overload.  
Specifically, this experiment will investigate factors influencing drivers’ judgments 
regarding when to engage in IVIS tasks and when to suspend interaction with IVIS 
tasks.  As part of this effort the experiment will also investigate the dynamics of 
distraction, with the hypothesis that longer tasks will result in a gradual withdrawal of 
attention from the roadway.  Specific independent variables include: 

• Roadway demand (rural curves, rural straight, suburban) 
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• Duration of IVIS tasks 
• Whether cue to start an IVIS tasks is endogenous (based on the driver’s 

inclination) or exogenous (alert from the system) 
 
The specific outcomes of the experiment include: 
 

• The degree to which IVIS task duration affects driving performance and the 
decision to remain engaged in the IVIS task 

• The degree to which endogenous and exogenous cues affect the decision to 
engage 

• The ability of various distraction measures (e.g., eye movements, heart rate 
variability) to reflect decrements in driving performance associated with the 
potential withdrawal of attention that may occur as driver complete long IVIS 
tasks 
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5.10 CONCLUSION 
A great range of technology may enter passenger vehicles in the near future.  This is 
likely to pose distractions considerably greater and more varied than those currently 
posed by cellular phones, CD players, and climate controls.  Longer commute times and 
increased productivity pressures may encourage drivers to use these devices.  To 
mitigate the distraction associated with these devices, distraction can be measured in 
real time and used to adapt the IVIS.  To achieve this objective this report reviewed 
literature related to previous efforts to develop adaptive automation, distraction and 
workload, the underlying theoretical basis of multitask performance, measurement 
techniques, and data integration and analysis algorithms.  Literature from each of these 
areas offers useful guidance for estimating driver distraction.   
 
Regarding previous efforts to produce adaptive automation and driver support systems, 
the following primary conclusions emerge: 
 

• Driver characteristics such as age and level of experience, both with the driving 
and the various IVISs and IVIS functions, can guide adaptation.   

• Driver adaptation to the IVISs, such that the safety benefits are eroded as drivers 
take advantage of the increased ability to do non-driving tasks as they drive, 
should be assessed in developing adaptive systems.   

• Driver-specific models for detecting and mitigating distraction may be 
substantially more effective than generic models.  

• Driver variables should be monitored for signs of both overload and underload, 
particularly as vehicle automation (e.g., adaptive cruise control) reduces drivers’ 
vehicle control interactions.  

• The demands of the IVIS, including the types of tasks and the modality in which 
the tasks are conveyed influence driver workload.   

• The extent to which the IVIS devices are integrated (e.g., consistent interface 
features, minimization of data entry, coordination and prioritization of messages) 
has important implications for the cognitive demand they impose on the driver.  

• Driver acceptance of system adaptation strategies is critical so that the system 
will not be subject to misuse or abuse.   

 
Regarding previous research addressing workload, the following primary conclusions 
emerge: 
 

• Workload depends on multiple aspects of the task (e.g., visual, manual, and 
cognitive components). 

• Both the roadway environment and the in-vehicle system contribute to the 
demands that confront the driver. 

• Control strategies and performance criteria greatly influence the amount of effort 
expended and workload experienced by the driver. 

• Withdrawal of effort from driving tasks and focus on IVIS can degrade safety 
without any indication of information overload. 
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• Conditions of underload can lead to distraction-related performance decrements, 
particularly during transitions from underload to overload. 

 
Regarding research addressing task management and task switching, the following 
primary conclusions emerge: 
 

• Responses take longer and are less accurate following a switch to a new task. 
• Advanced knowledge of an upcoming switch reduces the cost of switching. 
• Advanced knowledge does not eliminate the cost of switching. 
• Task performance recovers quickly after a switch, but there is a long-term 

performance decrement compared to single task performance. 
• Exogenous factors (characteristics of the tasks and their context) interact with 

endogenous factors (goals and deliberate intentions) to govern how tasks are 
identified and how people switch between them.  

• The task identify can range from a high-level description to a detailed description, 
and this identify guides performance criteria. 

• People tend to adopt high-level descriptions of tasks when possible. 
• Breakdowns in task performance lead people to adopt lower-level descriptions. 
• Driving consists of three qualitatively different levels of behavior: strategic, 

tactical, and control behavior.  Distraction may affect each of these behaviors, 
but most research has addressed only control behavior. 

 
Conclusions regarding adaptive automation, workload and task management guide the 
development of methods to estimate driver distraction.  Most fundamentally, distraction 
can best be estimated by multiple means.  Specifically, data regarding driver state, IVIS 
state and the associated cognitive operations imposed on the driver, and driver 
performance.  Specific conclusions regarding the specific data that need to be gathered 
include: 
 

• Criteria used to select candidate measures of distraction include the need for 
timely, diagnostic, sensitive, and practical measures. 

• For physiological measures the most promising include eye movements, eye 
blinks, and the 0.1 Hz variability of heart rate 

• For driving performance, promising measures include lane position, speed 
control, and headway maintenance. 

• For IVIS interactions, MRT and OFM-COG offer a promising means of 
anticipating the demand likely to be posed by the IVIS. 

• It is likely that relationships between these variables might be particularly 
powerful predictors of distraction, such as eye movements and steering behavior. 

• The complex and non-linear nature of the data predicting distraction may be best 
analyzed with sophisticated algorithms, such as Hidden Markov Models (HMM) 
and Support Vector Machines (SVM). 

 
These conclusions also highlight important gaps in the research base needed to 
estimate driver distraction and support adaptive information systems for drivers.  To fill 
these gaps two experiments are proposed.  The first addresses four critical issues: 
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• The degree to which IVIS interactions, physiological, and driving performance 

measures, alone and in combination, can predict reaction time decrements 
• Investigate whether distraction affecting tactical performance displays a different 

signature compared to distraction affecting control performance 
• Assess how individual and generic models affect the precision of the predicted 

distraction 
• Assess the robustness, reliability, and specificity of traditional linear regression, 

Hidden Markov Models, and Support Vector Machines in predicting driver 
distraction  

 
 
The second experiment complements the first and addresses the issue of strategic task 
management as it relates to distraction. 

• Address how periods of low and high activity influence resource allocation and 
effort investment 

• Investigate how IVIS characteristics influence attentional withdrawal and driving 
task preemption.  

• Investigate how driver-initiated and IVIS-initiated influence drivers’ decision to 
engage and persist with IVIS interactions.  

• Assess task inertia effects on driver distraction 
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